Keeping Medical AI Healthy: A Review of Detection and Correction Methods for System Degradation
- URL: http://arxiv.org/abs/2506.17442v1
- Date: Fri, 20 Jun 2025 19:22:07 GMT
- Title: Keeping Medical AI Healthy: A Review of Detection and Correction Methods for System Degradation
- Authors: Hao Guan, David Bates, Li Zhou,
- Abstract summary: This review presents a forward-looking perspective on monitoring and maintaining the "health" of AI systems in healthcare.<n>We highlight the urgent need for continuous performance monitoring, early degradation detection, and effective self-correction mechanisms.<n>This work aims to guide the development of reliable, robust medical AI systems capable of sustaining safe, long-term deployment in dynamic clinical settings.
- Score: 6.781778751487079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is increasingly integrated into modern healthcare, offering powerful support for clinical decision-making. However, in real-world settings, AI systems may experience performance degradation over time, due to factors such as shifting data distributions, changes in patient characteristics, evolving clinical protocols, and variations in data quality. These factors can compromise model reliability, posing safety concerns and increasing the likelihood of inaccurate predictions or adverse outcomes. This review presents a forward-looking perspective on monitoring and maintaining the "health" of AI systems in healthcare. We highlight the urgent need for continuous performance monitoring, early degradation detection, and effective self-correction mechanisms. The paper begins by reviewing common causes of performance degradation at both data and model levels. We then summarize key techniques for detecting data and model drift, followed by an in-depth look at root cause analysis. Correction strategies are further reviewed, ranging from model retraining to test-time adaptation. Our survey spans both traditional machine learning models and state-of-the-art large language models (LLMs), offering insights into their strengths and limitations. Finally, we discuss ongoing technical challenges and propose future research directions. This work aims to guide the development of reliable, robust medical AI systems capable of sustaining safe, long-term deployment in dynamic clinical settings.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.<n>The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.<n>The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - New Epochs in AI Supervision: Design and Implementation of an Autonomous
Radiology AI Monitoring System [5.50085484902146]
We introduce novel methods for monitoring the performance of radiology AI classification models in practice.
We propose two metrics - predictive divergence and temporal stability - to be used for preemptive alerts of AI performance changes.
arXiv Detail & Related papers (2023-11-24T06:29:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Explainable AI for Malnutrition Risk Prediction from m-Health and
Clinical Data [3.093890460224435]
This paper presents a novel AI framework for early and explainable malnutrition risk detection based on heterogeneous m-health data.
We performed an extensive model evaluation including both subject-independent and personalised predictions.
We also investigated several benchmark XAI methods to extract global model explanations.
arXiv Detail & Related papers (2023-05-31T08:07:35Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.