Exploring Strategies for Personalized Radiation Therapy Part I Unlocking Response-Related Tumor Subregions with Class Activation Mapping
- URL: http://arxiv.org/abs/2506.17536v1
- Date: Sat, 21 Jun 2025 01:24:25 GMT
- Title: Exploring Strategies for Personalized Radiation Therapy Part I Unlocking Response-Related Tumor Subregions with Class Activation Mapping
- Authors: Hao Peng, Steve Jiang, Robert Timmerman,
- Abstract summary: This study compares three approaches for predicting treatment response: standard radiomics, gradient based features, and convolutional neural networks enhanced with Class Activation Mapping.<n>We analyzed 69 brain metastases from 39 patients treated with Gamma Knife radiosurgery.<n> Pixel wise CAM outperformed both radiomics and gradient based methods in classification accuracy.
- Score: 17.401088816596054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized precision radiation therapy requires more than simple classification, it demands the identification of prognostic, spatially informative features and the ability to adapt treatment based on individual response. This study compares three approaches for predicting treatment response: standard radiomics, gradient based features, and convolutional neural networks enhanced with Class Activation Mapping. We analyzed 69 brain metastases from 39 patients treated with Gamma Knife radiosurgery. An integrated autoencoder classifier model was used to predict whether tumor volume would shrink by more than 20 percent at a three months follow up, framed as a binary classification task. The results highlight their strength in hierarchical feature extraction and the classifiers discriminative capacity. Among the models, pixel wise CAM provides the most detailed spatial insight, identifying lesion specific regions rather than relying on fixed patterns, demonstrating strong generalization. In non responding lesions, the activated regions may indicate areas of radio resistance. Pixel wise CAM outperformed both radiomics and gradient based methods in classification accuracy. Moreover, its fine grained spatial features allow for alignment with cellular level data, supporting biological validation and deeper understanding of heterogeneous treatment responses. Although further validation is necessary, these findings underscore the promise in guiding personalized and adaptive radiotherapy strategies for both photon and particle therapies.
Related papers
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - From Pixel to Slide image: Polarization Modality-based Pathological
Diagnosis Using Representation Learning [9.326969394501958]
Pathologically, thyroid tumors pose diagnostic challenges due to improper specimen sampling.
We have designed a three-stage model using representation learning to integrate pixel-level and slice-level annotations for distinguishing thyroid tumors.
arXiv Detail & Related papers (2024-01-03T02:01:09Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Prostate Lesion Detection and Salient Feature Assessment Using
Zone-Based Classifiers [0.0]
Multi-parametric magnetic resonance imaging (mpMRI) has a growing role in detecting prostate cancer lesions.
It is pertinent that medical professionals who interpret these scans reduce the risk of human error by using computer-aided detection systems.
Here we investigate the best machine learning classifier for each prostate zone.
arXiv Detail & Related papers (2022-08-24T13:08:56Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT) fuses textitglobal image information with textitlocal knowledge-guided radiomics information.
RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomic information.
arXiv Detail & Related papers (2022-07-10T06:32:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.