OpenMAP-BrainAge: Generalizable and Interpretable Brain Age Predictor
- URL: http://arxiv.org/abs/2506.17597v1
- Date: Sat, 21 Jun 2025 05:24:42 GMT
- Title: OpenMAP-BrainAge: Generalizable and Interpretable Brain Age Predictor
- Authors: Pengyu Kan, Craig Jones, Kenichi Oishi,
- Abstract summary: We develop an age prediction model which is interpretable and robust to demographic and technological MRI scans.<n>Our model processes T1-dimensional pseudo-3D MRI scans from three views and incorporates linear brain information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: To develop an age prediction model which is interpretable and robust to demographic and technological variances in brain MRI scans. Materials and Methods: We propose a transformer-based architecture that leverages self-supervised pre-training on large-scale datasets. Our model processes pseudo-3D T1-weighted MRI scans from three anatomical views and incorporates brain volumetric information. By introducing a stem architecture, we reduce the conventional quadratic complexity of transformer models to linear complexity, enabling scalability for high-dimensional MRI data. We trained our model on ADNI2 $\&$ 3 (N=1348) and OASIS3 (N=716) datasets (age range: 42 - 95) from the North America, with an 8:1:1 split for train, validation and test. Then, we validated it on the AIBL dataset (N=768, age range: 60 - 92) from Australia. Results: We achieved an MAE of 3.65 years on ADNI2 $\&$ 3 and OASIS3 test set and a high generalizability of MAE of 3.54 years on AIBL. There was a notable increase in brain age gap (BAG) across cognitive groups, with mean of 0.15 years (95% CI: [-0.22, 0.51]) in CN, 2.55 years ([2.40, 2.70]) in MCI, 6.12 years ([5.82, 6.43]) in AD. Additionally, significant negative correlation between BAG and cognitive scores was observed, with correlation coefficient of -0.185 (p < 0.001) for MoCA and -0.231 (p < 0.001) for MMSE. Gradient-based feature attribution highlighted ventricles and white matter structures as key regions influenced by brain aging. Conclusion: Our model effectively fused information from different views and volumetric information to achieve state-of-the-art brain age prediction accuracy, improved generalizability and interpretability with association to neurodegenerative disorders.
Related papers
- Three-dimensional end-to-end deep learning for brain MRI analysis [1.0021251840264285]
This study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction.<n>SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB and 0.85-0.91 in external test sets for sex classification.<n>For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets.
arXiv Detail & Related papers (2025-06-30T14:44:49Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.<n>Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.<n>We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.<n>Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - MRI Volume-Based Robust Brain Age Estimation Using Weight-Shared Spatial Attention in 3D CNNs [3.038642416291856]
The proposed model consists of seven 3D CNN layers, with a shared spatial attention layer incorporated at each CNN layer followed by five dense layers.
The novelty of the proposed method lies in the idea of spatial attention module, with shared weights across the CNN layers.
The proposed model, trained on ADNI dataset comprising 516 T1 weighted MRI volumes of healthy subjects, resulted in Mean Absolute Error (MAE) of 1.662 years.
arXiv Detail & Related papers (2024-07-09T09:00:21Z) - Triamese-ViT: A 3D-Aware Method for Robust Brain Age Estimation from
MRIs [0.7770029179741429]
This paper introduces Triamese-ViT, an innovative adaptation of the ViT model for brain age estimation.
Tested on a dataset of 1351 MRI scans, Triamese-ViT achieves a Mean Absolute Error (MAE) of 3.84, a 0.9 Spearman correlation coefficient with chronological age, and a -0.29 Spearman coefficient correlation between the brain age gap and chronological age.
arXiv Detail & Related papers (2024-01-13T03:29:56Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
Brain magnetic resonance imaging (MRI) of infants demonstrates a specific pattern of development beyond myelination.
With no standardized criteria, visual estimation of the structural maturity of the brain from MRI before three years of age remains dominated by inter-observer and intra-observer variability.
We explore the general feasibility to tackle this task, and the utility of different approaches, including two- and three-dimensional convolutional neural networks (CNN)
In the best performing approach, we achieved an accuracy of 0.90 [95% CI:0.86-0.94] using a 2D CNN on a central axial thick slab.
arXiv Detail & Related papers (2021-12-27T18:02:48Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.