MRI Volume-Based Robust Brain Age Estimation Using Weight-Shared Spatial Attention in 3D CNNs
- URL: http://arxiv.org/abs/2407.06686v1
- Date: Tue, 9 Jul 2024 09:00:21 GMT
- Title: MRI Volume-Based Robust Brain Age Estimation Using Weight-Shared Spatial Attention in 3D CNNs
- Authors: Vamshi Krishna Kancharla, Neelam Sinha,
- Abstract summary: The proposed model consists of seven 3D CNN layers, with a shared spatial attention layer incorporated at each CNN layer followed by five dense layers.
The novelty of the proposed method lies in the idea of spatial attention module, with shared weights across the CNN layers.
The proposed model, trained on ADNI dataset comprising 516 T1 weighted MRI volumes of healthy subjects, resulted in Mean Absolute Error (MAE) of 1.662 years.
- Score: 3.038642416291856
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Important applications of advancements in machine learning, are in the area of healthcare, more so for neurological disorder detection. A crucial step towards understanding the neurological status, is to estimate the brain age using structural MRI volumes, in order to measure its deviation from chronological age. Factors that contribute to brain age are best captured using a data-driven approach, such as deep learning. However, it places a huge demand on the availability of diverse datasets. In this work, we propose a robust brain age estimation paradigm that utilizes a 3D CNN model, by-passing the need for model-retraining across datasets. The proposed model consists of seven 3D CNN layers, with a shared spatial attention layer incorporated at each CNN layer followed by five dense layers. The novelty of the proposed method lies in the idea of spatial attention module, with shared weights across the CNN layers. This weight sharing ensures directed attention to specific brain regions, for localizing age-related features within the data, lending robustness. The proposed model, trained on ADNI dataset comprising 516 T1 weighted MRI volumes of healthy subjects, resulted in Mean Absolute Error (MAE) of 1.662 years, which is an improvement of 1.688 years over the state-of-the-art (SOTA) model, based on disjoint test samples from the same repository. To illustrate generalizability, the same pipeline was utilized on volumes from a publicly available source called OASIS3. From OASIS3, MRI volumes 890 healthy subjects were utilized resulting in MAE of 2.265 years. Due to diversity in acquisitions across multiple sites, races and genetic factors, traditional CNN models are not guaranteed to prioritize brain regions crucial for age estimation. In contrast, the proposed weight-shared spatial attention module, directs attention on specific regions, required for the estimation.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Fighting the scanner effect in brain MRI segmentation with a progressive
level-of-detail network trained on multi-site data [1.6379393441314491]
LOD-Brain is a 3D convolutional neural network with progressive levels-of-detail able to segment brain data from any site.
It produces state-of-the-art results, with no significant difference in performance between internal and external sites.
Its portability opens the way for large scale application across different healthcare institutions, patient populations, and imaging technology manufacturers.
arXiv Detail & Related papers (2022-11-04T12:15:18Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
Brain magnetic resonance imaging (MRI) of infants demonstrates a specific pattern of development beyond myelination.
With no standardized criteria, visual estimation of the structural maturity of the brain from MRI before three years of age remains dominated by inter-observer and intra-observer variability.
We explore the general feasibility to tackle this task, and the utility of different approaches, including two- and three-dimensional convolutional neural networks (CNN)
In the best performing approach, we achieved an accuracy of 0.90 [95% CI:0.86-0.94] using a 2D CNN on a central axial thick slab.
arXiv Detail & Related papers (2021-12-27T18:02:48Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Neurodevelopmental Age Estimation of Infants Using a 3D-Convolutional
Neural Network Model based on Fusion MRI Sequences [0.08341869765517104]
The ability to determine if the brain is developing normally is a key component of pediatric neuroradiology and neurology.
We investigated a three-dimensional convolutional neural network (3D CNN) to rapidly classify brain developmental age using common MRI sequences.
arXiv Detail & Related papers (2020-10-07T01:24:15Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - Interpretation of 3D CNNs for Brain MRI Data Classification [56.895060189929055]
We extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans.
We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods.
arXiv Detail & Related papers (2020-06-20T17:56:46Z) - Longitudinal Pooling & Consistency Regularization to Model Disease
Progression from MRIs [11.979581631288832]
We propose to combine features across visits by coupling feature extraction with a novel longitudinal pooling layer.
We evaluate the proposed method on the longitudinal structural MRIs from three datasets: Alzheimer's Disease Neuroimaging Initiative (ADNI), a dataset composed of 274 normal controls and 329 patients with Alcohol Use Disorder (AUD)
In all three experiments our method is superior to other widely used approaches for longitudinal classification thus making a unique contribution towards more accurate tracking of the impact of conditions on the brain.
arXiv Detail & Related papers (2020-03-31T05:28:51Z) - Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks [0.1160208922584163]
We train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled.
Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections.
arXiv Detail & Related papers (2020-02-14T17:28:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.