論文の概要: Regular Tree Search for Simulation Optimization
- arxiv url: http://arxiv.org/abs/2506.17696v1
- Date: Sat, 21 Jun 2025 12:07:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.545418
- Title: Regular Tree Search for Simulation Optimization
- Title(参考訳): シミュレーション最適化のための正規木探索
- Authors: Du-Yi Wang, Guo Liang, Guangwu Liu, Kun Zhang,
- Abstract要約: 本稿では,適応サンプリングと探索空間分割を統合した正規木探索というランダムアルゴリズムのクラスを提案する。
我々は、目的関数の連続性を必要とせず、最適性ギャップを含む仮定に基づいて、準ガウス雑音の下でのグローバル収束を証明した。
- 参考スコア(独自算出の注目度): 5.54189661879098
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tackling simulation optimization problems with non-convex objective functions remains a fundamental challenge in operations research. In this paper, we propose a class of random search algorithms, called Regular Tree Search, which integrates adaptive sampling with recursive partitioning of the search space. The algorithm concentrates simulations on increasingly promising regions by iteratively refining a tree structure. A tree search strategy guides sampling decisions, while partitioning is triggered when the number of samples in a leaf node exceeds a threshold that depends on its depth. Furthermore, a specific tree search strategy, Upper Confidence Bounds applied to Trees (UCT), is employed in the Regular Tree Search. We prove global convergence under sub-Gaussian noise, based on assumptions involving the optimality gap, without requiring continuity of the objective function. Numerical experiments confirm that the algorithm reliably identifies the global optimum and provides accurate estimates of its objective value.
- Abstract(参考訳): 非凸目的関数によるシミュレーション最適化問題への対処は、操作研究における根本的な課題である。
本稿では,適応的サンプリングと再帰的な探索空間分割を統合したランダム探索アルゴリズムのクラスである正則木探索を提案する。
このアルゴリズムは、木構造を反復的に精錬することで、ますます有望な領域にシミュレーションを集中させる。
木探索戦略はサンプリング決定を導くが、葉ノード内のサンプルの数がその深さに依存する閾値を超えると分割がトリガーされる。
さらに,通常木探索において,特定の木探索戦略であるアッパー信頼境界を木(UCT)に適用する。
我々は、目的関数の連続性を必要とせず、最適性ギャップを含む仮定に基づいて、準ガウス雑音の下でのグローバル収束を証明した。
数値実験により,このアルゴリズムが大域的最適度を確実に同定し,目標値の正確な推定値を提供することを確認した。
関連論文リスト
- Decision Tree Induction Through LLMs via Semantically-Aware Evolution [53.0367886783772]
遺伝的プログラミング(GP)に基づく決定木誘導のための進化的最適化手法を提案する。
私たちの重要なイノベーションは、セマンティックな事前情報と、検索空間に関するドメイン固有の知識をアルゴリズムに統合することです。
これは、構造化された自然言語プロンプトを扱う新しい遺伝子操作子によって操作される。
論文 参考訳(メタデータ) (2025-03-18T12:52:03Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Sample-and-Bound for Non-Convex Optimization [18.30858789210194]
我々はモンテカルロのベンチマークに適応して効率を向上する非次元目的最適化のための新しいサンプリング手法を提案する。
提案する高次ベースラインおよび競合ベンチマークアルゴリズムを積極的に評価する。
論文 参考訳(メタデータ) (2024-01-09T20:45:47Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - CITS: Coherent Ising Tree Search Algorithm Towards Solving Combinatorial
Optimization Problems [0.0]
本稿では、マルコフ連鎖からSAに基づく奥行き制限木への探索空間の拡大による探索アルゴリズムを提案する。
それぞれのイテレーションにおいて、このアルゴリズムは、先を見据えて、木に沿って探索することで、実現可能な探索空間内で最高の準最適解を選択する」。
以上の結果から,IsingのNP最適化問題に対する高次木探索戦略は,より少ないエポックの範囲で解決可能であることが示唆された。
論文 参考訳(メタデータ) (2022-03-09T10:07:26Z) - From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical
Clustering [33.000371053304676]
本稿では,Dasguptaの離散最適化問題に対して,証明可能な品質保証を用いた最初の連続緩和を提案する。
勾配勾配勾配の近似解でさえ、凝集性クラスタリングよりも優れた品質を有することを示す。
また、下流分類タスクにおけるエンドツーエンドトレーニングによるHypHCの柔軟性についても強調する。
論文 参考訳(メタデータ) (2020-10-01T13:43:19Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。