PDC-Net: Pattern Divide-and-Conquer Network for Pelvic Radiation Injury Segmentation
- URL: http://arxiv.org/abs/2506.17712v1
- Date: Sat, 21 Jun 2025 13:25:19 GMT
- Title: PDC-Net: Pattern Divide-and-Conquer Network for Pelvic Radiation Injury Segmentation
- Authors: Xinyu Xiong, Wuteng Cao, Zihuang Wu, Lei Zhang, Chong Gao, Guanbin Li, Qiyuan Qin,
- Abstract summary: We propose a Pattern Divide-and-Conquer Network (PDC-Net) for PRI segmentation.<n>The core idea is to use different network modules to "divide" various local and global patterns.<n>We evaluate our method on the first large-scale pelvic radiation injury dataset.
- Score: 42.073820114256826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of Pelvic Radiation Injury (PRI) from Magnetic Resonance Images (MRI) is crucial for more precise prognosis assessment and the development of personalized treatment plans. However, automated segmentation remains challenging due to factors such as complex organ morphologies and confusing context. To address these challenges, we propose a novel Pattern Divide-and-Conquer Network (PDC-Net) for PRI segmentation. The core idea is to use different network modules to "divide" various local and global patterns and, through flexible feature selection, to "conquer" the Regions of Interest (ROI) during the decoding phase. Specifically, considering that our ROI often manifests as strip-like or circular-like structures in MR slices, we introduce a Multi-Direction Aggregation (MDA) module. This module enhances the model's ability to fit the shape of the organ by applying strip convolutions in four distinct directions. Additionally, to mitigate the challenge of confusing context, we propose a Memory-Guided Context (MGC) module. This module explicitly maintains a memory parameter to track cross-image patterns at the dataset level, thereby enhancing the distinction between global patterns associated with the positive and negative classes. Finally, we design an Adaptive Fusion Decoder (AFD) that dynamically selects features from different patterns based on the Mixture-of-Experts (MoE) framework, ultimately generating the final segmentation results. We evaluate our method on the first large-scale pelvic radiation injury dataset, and the results demonstrate the superiority of our PDC-Net over existing approaches.
Related papers
- RPCANet++: Deep Interpretable Robust PCA for Sparse Object Segmentation [51.37553739930992]
RPCANet++ is a sparse object segmentation framework that fuses the interpretability of RPCA with efficient deep architectures.<n>Our approach unfolds a relaxed RPCA model into a structured network comprising a Background Approximation Module (BAM), an Object Extraction Module (OEM) and an Image Restoration Module (IRM)<n>Experiments on diverse datasets demonstrate that RPCANet++ achieves state-of-the-art performance under various imaging scenarios.
arXiv Detail & Related papers (2025-08-06T08:19:37Z) - Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion [12.839049648094893]
coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD)<n>We propose a novel framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture.<n>The proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation.
arXiv Detail & Related papers (2025-07-17T09:25:00Z) - An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation [21.228897192093573]
We propose a novel arbitrary-modal fusion network for volumetric cranial nerves (CNs) tract segmentation, called CNTSeg-v2.<n>Our model encompasses an Arbitrary-Modal Collaboration Module (ACM) designed to effectively extract informative features from other auxiliary modalities.<n>Our CNTSeg-v2 achieves state-of-the-art segmentation performance, outperforming all competing methods.
arXiv Detail & Related papers (2025-05-05T06:00:41Z) - Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining [0.0]
This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images.<n>We propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders.<n>Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR.
arXiv Detail & Related papers (2025-04-04T14:31:06Z) - A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities [15.841483814265592]
We propose a Multimodal feature distillation with Convolutional Neural Network (CNN)-Transformer hybrid network (MCTSeg) for accurate brain tumor segmentation with missing modalities.
Our ablation study demonstrates the importance of the proposed modules with CNN-Transformer networks and the convolutional blocks in Transformer for improving the performance of brain tumor segmentation with missing modalities.
arXiv Detail & Related papers (2024-04-22T09:33:44Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Reconstruction-driven Dynamic Refinement based Unsupervised Domain
Adaptation for Joint Optic Disc and Cup Segmentation [25.750583118977833]
Glaucoma is one of the leading causes of irreversible blindness.
It remains challenging to train an OD/OC segmentation model that could be deployed successfully to different healthcare centers.
We propose a novel unsupervised domain adaptation (UDA) method called Reconstruction-driven Dynamic Refinement Network (RDR-Net)
arXiv Detail & Related papers (2023-04-10T13:33:13Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
A sequential multi-task joint learning network model is proposed to train a combined end-to-end pipeline.
The proposed framework is verified on MRB dataset, which achieves superior performance on other SOTA methods in terms of both reconstruction and segmentation.
arXiv Detail & Related papers (2021-05-14T05:55:27Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.