THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction
- URL: http://arxiv.org/abs/2506.17844v1
- Date: Sat, 21 Jun 2025 22:43:42 GMT
- Title: THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction
- Authors: Xin Zhang, Qiyu Wei, Yingjie Zhu, Fanyi Wu, Sophia Ananiadou,
- Abstract summary: We propose THCM-CAL, a Temporal-Hierarchical Causal Model with Conformal Causal.<n>Our framework constructs a multimodal causal graph where nodes represent clinical entities from two modalities.<n>Through hierarchical causal discovery, THCM-CAL infers three clinically grounded interactions: intra-slice same-modality sequencing, intra-slice cross-modality triggers, and inter-slice risk propagation.
- Score: 18.00167292196245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated clinical risk prediction from electronic health records (EHRs) demands modeling both structured diagnostic codes and unstructured narrative notes. However, most prior approaches either handle these modalities separately or rely on simplistic fusion strategies that ignore the directional, hierarchical causal interactions by which narrative observations precipitate diagnoses and propagate risk across admissions. In this paper, we propose THCM-CAL, a Temporal-Hierarchical Causal Model with Conformal Calibration. Our framework constructs a multimodal causal graph where nodes represent clinical entities from two modalities: Textual propositions extracted from notes and ICD codes mapped to textual descriptions. Through hierarchical causal discovery, THCM-CAL infers three clinically grounded interactions: intra-slice same-modality sequencing, intra-slice cross-modality triggers, and inter-slice risk propagation. To enhance prediction reliability, we extend conformal prediction to multi-label ICD coding, calibrating per-code confidence intervals under complex co-occurrences. Experimental results on MIMIC-III and MIMIC-IV demonstrate the superiority of THCM-CAL.
Related papers
- Measuring Sample Quality with Copula Discrepancies [0.0]
Copula Discrepancy (CD) is a principled and computationally efficient diagnostic for dependence structure.<n>Our theoretical framework provides the first structure-aware diagnostic specifically designed for the era of approximate inference.<n>With computational overhead orders of magnitude lower than existing Stein discrepancies, the CD provides both immediate practical value for MCMC practitioners and a theoretical foundation for the next generation of structure-aware sample quality assessment.
arXiv Detail & Related papers (2025-07-29T02:11:45Z) - LLM-Augmented Symptom Analysis for Cardiovascular Disease Risk Prediction: A Clinical NLP [2.2615384250361004]
This study introduces a novel LLM-augmented clinical NLP pipeline that employs domain-adapted large language models for symptom extraction, contextual reasoning, and correlation from free-text reports.<n> Evaluations on MIMIC-III and CARDIO-NLP datasets demonstrate improved performance in precision, recall, F1-score, and AUROC, with high clinical relevance.
arXiv Detail & Related papers (2025-07-15T07:32:16Z) - MOSCARD -- Causal Reasoning and De-confounding for Multimodal Opportunistic Screening of Cardiovascular Adverse Events [3.206697649226124]
Major Adverse Cardiovascular Events (MACE) remain the leading cause of mortality globally, as reported in the Global Disease Study 2021.<n>Opportunistic screening leverages data collected from routine health check-ups and multimodal data can play a key role to identify at-risk individuals.<n>We propose a novel predictive modeling framework - MOSCARD, multimodal causal reasoning with co-attention to align two distinct modalities and simultaneously mitigate bias and confounders in opportunistic risk estimation.
arXiv Detail & Related papers (2025-06-23T22:28:37Z) - Diffusion with a Linguistic Compass: Steering the Generation of Clinically Plausible Future sMRI Representations for Early MCI Conversion Prediction [13.937881108738042]
We propose a diffusion-based framework that synthesizes clinically plausible future sMRI representations directly from baseline data.<n>Experiments on ADNI and AIBL cohorts show that MCI-Diff outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-05T07:01:05Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.<n>Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report [4.340464264725625]
We introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs) and radiology/cardiology reports.
We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention.
To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach.
arXiv Detail & Related papers (2024-10-21T17:42:41Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Instrumental Variable Learning for Chest X-ray Classification [52.68170685918908]
We propose an interpretable instrumental variable (IV) learning framework to eliminate the spurious association and obtain accurate causal representation.
Our approach's performance is demonstrated using the MIMIC-CXR, NIH ChestX-ray 14, and CheXpert datasets.
arXiv Detail & Related papers (2023-05-20T03:12:23Z) - Cross-Modal Causal Intervention for Medical Report Generation [107.76649943399168]
Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance.<n> generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases.<n>We propose a two-stage framework named CrossModal Causal Representation Learning (CMCRL)<n> Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.