LLM-Augmented Symptom Analysis for Cardiovascular Disease Risk Prediction: A Clinical NLP
- URL: http://arxiv.org/abs/2507.11052v1
- Date: Tue, 15 Jul 2025 07:32:16 GMT
- Title: LLM-Augmented Symptom Analysis for Cardiovascular Disease Risk Prediction: A Clinical NLP
- Authors: Haowei Yang, Ziyu Shen, Junli Shao, Luyao Men, Xinyue Han, Jing Dong,
- Abstract summary: This study introduces a novel LLM-augmented clinical NLP pipeline that employs domain-adapted large language models for symptom extraction, contextual reasoning, and correlation from free-text reports.<n> Evaluations on MIMIC-III and CARDIO-NLP datasets demonstrate improved performance in precision, recall, F1-score, and AUROC, with high clinical relevance.
- Score: 2.2615384250361004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Timely identification and accurate risk stratification of cardiovascular disease (CVD) remain essential for reducing global mortality. While existing prediction models primarily leverage structured data, unstructured clinical notes contain valuable early indicators. This study introduces a novel LLM-augmented clinical NLP pipeline that employs domain-adapted large language models for symptom extraction, contextual reasoning, and correlation from free-text reports. Our approach integrates cardiovascular-specific fine-tuning, prompt-based inference, and entity-aware reasoning. Evaluations on MIMIC-III and CARDIO-NLP datasets demonstrate improved performance in precision, recall, F1-score, and AUROC, with high clinical relevance (kappa = 0.82) assessed by cardiologists. Challenges such as contextual hallucination, which occurs when plausible information contracts with provided source, and temporal ambiguity, which is related with models struggling with chronological ordering of events are addressed using prompt engineering and hybrid rule-based verification. This work underscores the potential of LLMs in clinical decision support systems (CDSS), advancing early warning systems and enhancing the translation of patient narratives into actionable risk assessments.
Related papers
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - CardioCoT: Hierarchical Reasoning for Multimodal Survival Analysis [2.668073128790639]
We propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework.<n>In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories.<n>In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction.
arXiv Detail & Related papers (2025-05-25T15:41:18Z) - Early Diagnosis of Atrial Fibrillation Recurrence: A Large Tabular Model Approach with Structured and Unstructured Clinical Data [0.0]
This study aims to predict AF recurrence between one month and two years after onset by evaluating traditional clinical scores, ML models, and our LTM approach.
arXiv Detail & Related papers (2025-05-20T17:31:05Z) - Automating Adjudication of Cardiovascular Events Using Large Language Models [3.7312896556790855]
We present a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs)<n>Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication.<n>This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials.
arXiv Detail & Related papers (2025-03-21T15:25:53Z) - Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.