Diffusion with a Linguistic Compass: Steering the Generation of Clinically Plausible Future sMRI Representations for Early MCI Conversion Prediction
- URL: http://arxiv.org/abs/2506.05428v1
- Date: Thu, 05 Jun 2025 07:01:05 GMT
- Title: Diffusion with a Linguistic Compass: Steering the Generation of Clinically Plausible Future sMRI Representations for Early MCI Conversion Prediction
- Authors: Zhihao Tang, Chaozhuo Li, Litian Zhang, Xi Zhang,
- Abstract summary: We propose a diffusion-based framework that synthesizes clinically plausible future sMRI representations directly from baseline data.<n>Experiments on ADNI and AIBL cohorts show that MCI-Diff outperforms state-of-the-art baselines.
- Score: 13.937881108738042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early prediction of Mild Cognitive Impairment (MCI) conversion is hampered by a trade-off between immediacy--making fast predictions from a single baseline sMRI--and accuracy--leveraging longitudinal scans to capture disease progression. We propose MCI-Diff, a diffusion-based framework that synthesizes clinically plausible future sMRI representations directly from baseline data, achieving both real-time risk assessment and high predictive performance. First, a multi-task sequence reconstruction strategy trains a shared denoising network on interpolation and extrapolation tasks to handle irregular follow-up sampling and learn robust latent trajectories. Second, an LLM-driven "linguistic compass" is introduced for clinical plausibility sampling: generated feature candidates are quantized, tokenized, and scored by a fine-tuned language model conditioned on expected structural biomarkers, guiding autoregressive generation toward realistic disease patterns. Experiments on ADNI and AIBL cohorts show that MCI-Diff outperforms state-of-the-art baselines, improving early conversion accuracy by 5-12%.
Related papers
- Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood [0.0]
This study introduces an integrated framework for predictive causal inference designed to overcome limitations in conventional single model approaches.<n> Specifically, we combine a Hidden Markov Model for spatial health state estimation with a Multi Task and Multi Graph Convolutional Network (MTGCN) for capturing temporal outcome trajectories.<n>To demonstrate its utility, we focus on clinical domains such as cancer, dementia, Parkinson disease, where treatment effects are challenging to observe directly.
arXiv Detail & Related papers (2025-07-11T03:11:15Z) - STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis [9.511932098831322]
We propose a multimodaltemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (KCCM)<n>Our STG framework combines CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution edges and temporal evolution.<n>A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance.
arXiv Detail & Related papers (2025-05-06T02:41:34Z) - Early Detection of Multidrug Resistance Using Multivariate Time Series Analysis and Interpretable Patient-Similarity Representations [8.062368743143388]
Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality.<n>This study proposes an interpretable Machine Learning framework for MDR prediction, aiming for both accurate inference and enhanced explainability.
arXiv Detail & Related papers (2025-04-24T16:19:13Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Swin fMRI Transformer Predicts Early Neurodevelopmental Outcomes from Neonatal fMRI [0.20482269513546453]
Accurately predicting developmental outcomes during this time is crucial for identifying delays and enabling timely interventions.<n>This study introduces the SwiFT (Swin 4D fMRI Transformer) model, designed to predict outcomes using neonatal fMRI.<n>Our analysis shows that SwiFT significantly outperforms baseline models in predicting cognitive, motor, and language outcomes.
arXiv Detail & Related papers (2024-11-25T12:20:07Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling [119.50438407358862]
We present the first complete characterization of efficient EM-based learning methods for CT-HMM models.
We show that EM-based learning consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics.
We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.
arXiv Detail & Related papers (2021-10-26T20:06:05Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.