ADA-DPM: A Neural Descriptors-based Adaptive Noise Filtering Strategy for SLAM
- URL: http://arxiv.org/abs/2506.18016v2
- Date: Sun, 27 Jul 2025 15:29:18 GMT
- Title: ADA-DPM: A Neural Descriptors-based Adaptive Noise Filtering Strategy for SLAM
- Authors: Yongxin Shao, Aihong Tan, Binrui Wang, Yinlian Jin, Licong Guan, Peng Liao,
- Abstract summary: We propose a neural descriptors-based adaptive noise filtering strategy for SLAM, named ADA-DPM.<n>To tackle dynamic object interference, we design the Dynamic Head to predict and filter out dynamic feature points.<n> Secondly, to mitigate the impact of noise and unstructured feature points, we propose the Global Importance Scoring Head.<n>Finally, experimental validations on multiple public datasets confirm the effectiveness of ADA-DPM.
- Score: 2.0781167019314806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lidar SLAM plays a significant role in mobile robot navigation and high-definition map construction. However, existing methods often face a trade-off between localization accuracy and system robustness in scenarios with a high proportion of dynamic objects, point cloud distortion, and unstructured environments. To address this issue, we propose a neural descriptors-based adaptive noise filtering strategy for SLAM, named ADA-DPM, which improves the performance of localization and mapping tasks through three key technical innovations. Firstly, to tackle dynamic object interference, we design the Dynamic Segmentation Head to predict and filter out dynamic feature points, eliminating the ego-motion interference caused by dynamic objects. Secondly, to mitigate the impact of noise and unstructured feature points, we propose the Global Importance Scoring Head that adaptively selects high-contribution feature points while suppressing the influence of noise and unstructured feature points. Moreover, we introduce the Cross-Layer Graph Convolution Module (GLI-GCN) to construct multi-scale neighborhood graphs, fusing local structural information across different scales and improving the discriminative power of overlapping features. Finally, experimental validations on multiple public datasets confirm the effectiveness of ADA-DPM.
Related papers
- Adaptive Control Attention Network for Underwater Acoustic Localization and Domain Adaptation [8.017203108408973]
Localizing acoustic sound sources in the ocean is a challenging task due to the complex and dynamic nature of the environment.<n>We propose a multi-branch network architecture designed to accurately predict the distance between a moving acoustic source and a receiver.<n>Our proposed method outperforms state-of-the-art (SOTA) approaches in similar settings.
arXiv Detail & Related papers (2025-06-20T18:13:30Z) - ADD-SLAM: Adaptive Dynamic Dense SLAM with Gaussian Splatting [12.846353008321394]
ADD-SLAM: an Adaptive Dynamic Dense SLAM framework based on Gaussian splitting.<n>We design an adaptive dynamic identification mechanism grounded in scene consistency analysis.<n>Ours requires no predefined semantic category priors and adaptively discovers scene dynamics.
arXiv Detail & Related papers (2025-05-26T02:17:17Z) - Generalized Uncertainty-Based Evidential Fusion with Hybrid Multi-Head Attention for Weak-Supervised Temporal Action Localization [28.005080560540133]
Weakly supervised temporal action localization (WS-TAL) is a task of targeting at localizing complete action instances and categorizing them with video-level labels.<n> Action-background ambiguity, primarily caused by background noise resulting from aggregation and intra-action variation, is a significant challenge for existing WS-TAL methods.<n>We introduce a hybrid multi-head attention (HMHA) module and generalized uncertainty-based evidential fusion (GUEF) module to address the problem.
arXiv Detail & Related papers (2024-12-27T03:04:57Z) - Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
arXiv Detail & Related papers (2024-08-05T08:35:59Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
Simultaneous localization and mapping (SLAM) with implicit neural representations has received extensive attention.
We propose a novel SLAM framework for dynamic environments.
arXiv Detail & Related papers (2024-07-18T09:35:48Z) - Enhancing Robustness to Noise Corruption for Point Cloud Recognition via Spatial Sorting and Set-Mixing Aggregation Module [17.588975042641007]
We propose Set-Mixer, a noise-robust aggregation module to mitigate the influence of individual noise points.
Experiments conducted on ModelNet40-C indicate that Set-Mixer significantly enhances the model performance on noisy point clouds.
arXiv Detail & Related papers (2024-07-15T15:21:34Z) - AMSP-UOD: When Vortex Convolution and Stochastic Perturbation Meet
Underwater Object Detection [40.532331552038485]
We present a novel Amplitude-Modulated Perturbation and Vortex Convolutional Network, AMSP-UOD.
AMSP-UOD addresses the impact of non-ideal imaging factors on detection accuracy in complex underwater environments.
Our method outperforms existing state-of-the-art methods in terms of accuracy and noise immunity.
arXiv Detail & Related papers (2023-08-23T05:03:45Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.<n>Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.<n>Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
We propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance.
Experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
arXiv Detail & Related papers (2020-12-07T08:16:32Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information.
In this paper, we explore these issues from a new perspective.
We implement a kind of more flexible and efficient multi-scale cross-modal feature processing.
arXiv Detail & Related papers (2020-07-13T07:59:55Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.