論文の概要: Team LA at SCIDOCA shared task 2025: Citation Discovery via relation-based zero-shot retrieval
- arxiv url: http://arxiv.org/abs/2506.18316v1
- Date: Mon, 23 Jun 2025 06:01:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.874058
- Title: Team LA at SCIDOCA shared task 2025: Citation Discovery via relation-based zero-shot retrieval
- Title(参考訳): SCIDOCAのチームLA共有タスク2025:関係に基づくゼロショット検索によるCitation Discovery
- Authors: Trieu An, Long Nguyen, Minh Le Nguyen,
- Abstract要約: Citation Discovery Shared Taskは、所定の項の候補プールからの正しい引用を予測することに焦点を当てている。
本稿では,まず,与えられた段落から抽出した関係特徴に基づいて,トップkの最も類似した抽象概念を抽出するシステムを開発する。
このサブセットから、最も関連性の高い引用を正確に識別するために、LLM(Large Language Model)を利用する。
- 参考スコア(独自算出の注目度): 0.8114880112033646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Citation Discovery Shared Task focuses on predicting the correct citation from a given candidate pool for a given paragraph. The main challenges stem from the length of the abstract paragraphs and the high similarity among candidate abstracts, making it difficult to determine the exact paper to cite. To address this, we develop a system that first retrieves the top-k most similar abstracts based on extracted relational features from the given paragraph. From this subset, we leverage a Large Language Model (LLM) to accurately identify the most relevant citation. We evaluate our framework on the training dataset provided by the SCIDOCA 2025 organizers, demonstrating its effectiveness in citation prediction.
- Abstract(参考訳): Citation Discovery Shared Taskは、所定の項の候補プールからの正しい引用を予測することに焦点を当てている。
主な課題は、要約文の長さと候補抽象文間の高い類似性から来ており、引用する正確な論文を決定することは困難である。
そこで本稿では,まず,与えられた段落から抽出した関係特徴に基づいて,トップkの最も類似した抽象概念を抽出するシステムを開発する。
このサブセットから、最も関連性の高い引用を正確に識別するために、LLM(Large Language Model)を利用する。
我々は,SCIDOCA 2025のオーガナイザが提供したトレーニングデータセットの枠組みを評価し,引用予測の有効性を実証した。
関連論文リスト
- GUM-SAGE: A Novel Dataset and Approach for Graded Entity Salience Prediction [12.172254885579706]
格付けされたエンティティサリエンス(英語版)は、テキストにおける相対的な重要性を反映したエンティティスコアを割り当てる。
両アプローチの強みを組み合わせた,格付けされたエンティティ・サリエンスのための新しいアプローチを提案する。
提案手法は,人間の要約やアライメントに基づくスコアとの相関が強く,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2025-04-15T01:26:14Z) - Text-Driven Neural Collaborative Filtering Model for Paper Source Tracing [1.124958340749622]
PST(Paper Source Tracing)タスクは、与えられた学術論文に対する重要な参照の識別を自動化することを目的としている。
このフレームワークでは、最終的な予測を生成するために、Neural Collaborative Filtering(NCF)モデルを採用している。
本手法は平均精度(MAP)測定値で0.37814のスコアを達成し,ベースラインモデルを上回っ,全参加チームで11位となった。
論文 参考訳(メタデータ) (2024-07-25T02:48:56Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Controllable Abstractive Dialogue Summarization with Sketch Supervision [56.59357883827276]
本モデルは,最大50.79のROUGE-Lスコアを持つ最大対話要約コーパスSAMSumの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-28T19:05:36Z) - EASE: Extractive-Abstractive Summarization with Explanations [18.046254486733186]
情報ボトルネック原理に基づく説明可能な要約システムを提案する。
人間が長い文書をまとめるために2段階の枠組みを使用するという以前の研究に触発されて、私たちのフレームワークは最初に説明として事前に定義された証拠の量を抽出します。
生成した要約の質を著しく犠牲にすることなく、我々のフレームワークからの説明は単純なベースラインよりも適切であることを示す。
論文 参考訳(メタデータ) (2021-05-14T17:45:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。