Dynamic Hybrid Modeling: Incremental Identification and Model Predictive Control
- URL: http://arxiv.org/abs/2506.18344v1
- Date: Mon, 23 Jun 2025 06:55:32 GMT
- Title: Dynamic Hybrid Modeling: Incremental Identification and Model Predictive Control
- Authors: Adrian Caspari, Thomas Bierweiler, Sarah Fadda, Daniel Labisch, Maarten Nauta, Franzisko Wagner, Merle Warmbold, Constantinos C. Pantelides,
- Abstract summary: The identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures.<n>We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components.<n>This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components.
- Score: 0.6775616141339018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical models are crucial for optimizing and controlling chemical processes, yet they often face significant limitations in terms of computational time, algorithm complexity, and development costs. Hybrid models, which combine mechanistic models with data-driven models (i.e. models derived via the application of machine learning to experimental data), have emerged as a promising solution to these challenges. However, the identification of dynamic hybrid models remains difficult due to the need to integrate data-driven models within mechanistic model structures. We present an incremental identification approach for dynamic hybrid models that decouples the mechanistic and data-driven components to overcome computational and conceptual difficulties. Our methodology comprises four key steps: (1) regularized dynamic parameter estimation to determine optimal time profiles for flux variables, (2) correlation analysis to evaluate relationships between variables, (3) data-driven model identification using advanced machine learning techniques, and (4) hybrid model integration to combine the mechanistic and data-driven components. This approach facilitates early evaluation of model structure suitability, accelerates the development of hybrid models, and allows for independent identification of data-driven components. Three case studies are presented to illustrate the robustness, reliability, and efficiency of our incremental approach in handling complex systems and scenarios with limited data.
Related papers
- C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning [78.36259648527401]
C2-Evo is an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities.<n>We show that C2-Evo consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks.
arXiv Detail & Related papers (2025-07-22T12:27:08Z) - Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.<n>By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Hybrid additive modeling with partial dependence for supervised regression and dynamical systems forecasting [5.611231523622238]
We introduce a new hybrid training approach based on partial dependence, which removes the need for intricate regularization.<n>We compare, on both synthetic and real regression problems, several approaches for training such hybrid models.<n>Experiments are carried out with different types of machine learning models, including tree-based models and artificial neural networks.
arXiv Detail & Related papers (2023-07-05T12:13:56Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
We study supervised regression models that combine rigid-body mechanics with data-driven modelling techniques.
We provide a unified view on the combination of data-driven regression models, such as neural networks and Gaussian processes, with analytical model priors.
arXiv Detail & Related papers (2020-12-11T11:26:48Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.