Hybrid additive modeling with partial dependence for supervised regression and dynamical systems forecasting
- URL: http://arxiv.org/abs/2307.02229v2
- Date: Thu, 16 Jan 2025 15:00:38 GMT
- Title: Hybrid additive modeling with partial dependence for supervised regression and dynamical systems forecasting
- Authors: Yann Claes, Vân Anh Huynh-Thu, Pierre Geurts,
- Abstract summary: We introduce a new hybrid training approach based on partial dependence, which removes the need for intricate regularization.
We compare, on both synthetic and real regression problems, several approaches for training such hybrid models.
Experiments are carried out with different types of machine learning models, including tree-based models and artificial neural networks.
- Score: 5.611231523622238
- License:
- Abstract: Learning processes by exploiting restricted domain knowledge is an important task across a plethora of scientific areas, with more and more hybrid training methods additively combining data-driven and model-based approaches. Although the obtained models are more accurate than purely data-driven models, the optimization process usually comes with sensitive regularization constraints. Furthermore, while such hybrid methods have been tested in various scientific applications, they have been mostly tested on dynamical systems, with only limited study about the influence of each model component on global performance and parameter identification. In this work, we introduce a new hybrid training approach based on partial dependence, which removes the need for intricate regularization. Moreover, we assess the performance of hybrid modeling against traditional machine learning methods on standard regression problems. We compare, on both synthetic and real regression problems, several approaches for training such hybrid models. We focus on hybrid methods that additively combine a parametric term with a machine learning term and investigate model-agnostic training procedures. Therefore, experiments are carried out with different types of machine learning models, including tree-based models and artificial neural networks. We also extend our partial dependence optimization process for dynamical systems forecasting and compare it to existing schemes.
Related papers
- Online Calibration of Deep Learning Sub-Models for Hybrid Numerical
Modeling Systems [34.50407690251862]
We present an efficient and practical online learning approach for hybrid systems.
We demonstrate that the method, called EGA for Euler Gradient Approximation, converges to the exact gradients in the limit of infinitely small time steps.
Results show significant improvements over offline learning, highlighting the potential of end-to-end online learning for hybrid modeling.
arXiv Detail & Related papers (2023-11-17T17:36:26Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Hybrid modeling of the human cardiovascular system using NeuralFMUs [0.0]
We show that the hybrid modeling process is more comfortable, needs less system knowledge and is less error-prone compared to modeling solely based on first principle.
The resulting hybrid model has improved in computation performance, compared to a pure first principle white-box model.
The considered use-case can serve as example for other modeling and simulation applications in and beyond the medical domain.
arXiv Detail & Related papers (2021-09-10T13:48:43Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - A Variational Infinite Mixture for Probabilistic Inverse Dynamics
Learning [34.90240171916858]
We develop an efficient variational Bayes inference technique for infinite mixtures of probabilistic local models.
We highlight the model's power in combining data-driven adaptation, fast prediction and the ability to deal with discontinuous functions and heteroscedastic noise.
We use the learned models for online dynamics control of a Barrett-WAM manipulator, significantly improving the trajectory tracking performance.
arXiv Detail & Related papers (2020-11-10T16:15:13Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.