Embedded FPGA Acceleration of Brain-Like Neural Networks: Online Learning to Scalable Inference
- URL: http://arxiv.org/abs/2506.18530v1
- Date: Mon, 23 Jun 2025 11:35:20 GMT
- Title: Embedded FPGA Acceleration of Brain-Like Neural Networks: Online Learning to Scalable Inference
- Authors: Muhammad Ihsan Al Hafiz, Naresh Ravichandran, Anders Lansner, Pawel Herman, Artur Podobas,
- Abstract summary: We present the first embedded FPGA accelerator for BCPNN on a Zynq UltraScale+ system using High-Level Synthesis.<n>Our accelerator achieves up to 17.5x latency and 94% energy savings over ARM baselines, without sacrificing accuracy.<n>This work enables practical neuromorphic computing on edge devices, bridging the gap between brain-like learning and real-world deployment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Edge AI applications increasingly require models that can learn and adapt on-device with minimal energy budget. Traditional deep learning models, while powerful, are often overparameterized, energy-hungry, and dependent on cloud connectivity. Brain-Like Neural Networks (BLNNs), such as the Bayesian Confidence Propagation Neural Network (BCPNN), propose a neuromorphic alternative by mimicking cortical architecture and biologically-constrained learning. They offer sparse architectures with local learning rules and unsupervised/semi-supervised learning, making them well-suited for low-power edge intelligence. However, existing BCPNN implementations rely on GPUs or datacenter FPGAs, limiting their applicability to embedded systems. This work presents the first embedded FPGA accelerator for BCPNN on a Zynq UltraScale+ SoC using High-Level Synthesis. We implement both online learning and inference-only kernels with support for variable and mixed precision. Evaluated on MNIST, Pneumonia, and Breast Cancer datasets, our accelerator achieves up to 17.5x latency and 94% energy savings over ARM baselines, without sacrificing accuracy. This work enables practical neuromorphic computing on edge devices, bridging the gap between brain-like learning and real-world deployment.
Related papers
- NeuroCoreX: An Open-Source FPGA-Based Spiking Neural Network Emulator with On-Chip Learning [0.0]
Spiking Neural Networks (SNNs) are computational models inspired by the structure and dynamics of biological neuronal networks.<n>NeuroCoreX is an FPGA-based emulator designed for the flexible co-design and testing of SNNs.
arXiv Detail & Related papers (2025-06-17T03:02:04Z) - A Reconfigurable Stream-Based FPGA Accelerator for Bayesian Confidence Propagation Neural Networks [0.0]
Brain-inspired algorithms are attractive and emerging alternatives to classical deep learning methods.<n>BCPNN is an important tool for both machine learning and computational neuroscience research.<n>BCPNN can reach state-of-the-art performance in tasks such as learning and memory recall compared to other models.<n>We design a custom stream-based accelerator for BCPNN using Field-Programmable Gate Arrays (FPGA) using Xilinx Vitis High-Level Synthesis (HLS) flow.
arXiv Detail & Related papers (2025-03-03T14:06:43Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
arXiv Detail & Related papers (2022-10-10T10:05:00Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks
with Emerging Neural Encoding on FPGAs [6.047137174639418]
End-to-end framework E3NE automates the generation of efficient SNN inference logic for FPGAs.
E3NE uses less than 50% of hardware resources and 20% less power, while reducing the latency by an order of magnitude.
arXiv Detail & Related papers (2021-11-19T04:01:19Z) - In-Hardware Learning of Multilayer Spiking Neural Networks on a
Neuromorphic Processor [6.816315761266531]
This work presents a spike-based backpropagation algorithm with biological plausible local update rules and adapts it to fit the constraint in a neuromorphic hardware.
The algorithm is implemented on Intel Loihi chip enabling low power in- hardware supervised online learning of multilayered SNNs for mobile applications.
arXiv Detail & Related papers (2021-05-08T09:22:21Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.