論文の概要: Foundation Models for Slide-level Cancer Subtyping in Digital Pathology
- arxiv url: http://arxiv.org/abs/2410.15886v1
- Date: Mon, 21 Oct 2024 11:04:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:29.288409
- Title: Foundation Models for Slide-level Cancer Subtyping in Digital Pathology
- Title(参考訳): デジタル病理学におけるスライドレベル癌サブタイピングの基礎モデル
- Authors: Pablo Meseguer, Rocío del Amor, Adrian Colomer, Valery Naranjo,
- Abstract要約: 本研究の目的は,MIL フレームワークを用いて,WSI 上の癌サブタイプのための事前訓練戦略に基づいて開発された様々な特徴抽出器の性能を比較することである。
その結果、6種類の皮膚がんの亜型を予測するために、イメージネットが事前訓練したモデルを超える基礎モデルの有効性が示された。
- 参考スコア(独自算出の注目度): 1.7641392161755438
- License:
- Abstract: Since the emergence of the ImageNet dataset, the pretraining and fine-tuning approach has become widely adopted in computer vision due to the ability of ImageNet-pretrained models to learn a wide variety of visual features. However, a significant challenge arises when adapting these models to domain-specific fields, such as digital pathology, due to substantial gaps between domains. To address this limitation, foundation models (FM) have been trained on large-scale in-domain datasets to learn the intricate features of histopathology images. In cancer diagnosis, whole-slide image (WSI) prediction is essential for patient prognosis, and multiple instance learning (MIL) has been implemented to handle the giga-pixel size of WSI. As MIL frameworks rely on patch-level feature aggregation, this work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework. Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes
- Abstract(参考訳): ImageNetデータセットの出現以来、ImageNet事前学習モデルが様々な視覚的特徴を学習できるため、コンピュータビジョンにおいて事前学習と微調整のアプローチが広く採用されている。
しかし、ドメイン間の大きなギャップのために、デジタル病理のようなドメイン固有の分野にこれらのモデルを適用する際には、大きな課題が生じる。
この制限に対処するため、ファンデーションモデル(FM)は大規模なドメイン内データセットを用いて、病理像の複雑な特徴を学習するために訓練されている。
がん診断では,患者の予後には全スライディング画像(WSI)の予測が不可欠であり,WSIのギガピクセルサイズを扱うためにマルチインスタンスラーニング(MIL)が実施されている。
MILフレームワークはパッチレベルの機能アグリゲーションに依存しているため、MILフレームワークの下でWSIをサブタイプするための様々な事前訓練戦略の下で開発された様々な特徴抽出器の性能を比較することを目的としている。
結果は、6種類の皮膚癌サブタイプ予測のためのイメージネット事前学習モデルを超える基礎モデルの有効性を示す。
関連論文リスト
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
本稿では,拡散モデルの生成的フィードバックを利用して画像エンコーダのセマンティックな分布を整合させる,シンプルだが効果的なアプローチであるDEEMを提案する。
DEEMは、トレーニング可能なパラメータが少なく、事前学習データが少なく、ベースモデルのサイズが小さいことを利用して、モデル幻覚を軽減するために、強化された堅牢性と優れた能力を示す。
論文 参考訳(メタデータ) (2024-05-24T05:46:04Z) - Generative Medical Segmentation [5.4613210257624605]
生成医療 (Generative Medical, GMS) は、生成モデルを利用して画像セグメンテーションを行う新しいアプローチである。
GMSは、画像とそれに対応する接地真実マスクの潜在表現を抽出するために、頑健な事前訓練された視覚基盤モデルを採用している。
GMSの設計により、モデルのトレーニング可能なパラメータが少なくなり、オーバーフィットのリスクが軽減され、その能力が向上する。
論文 参考訳(メタデータ) (2024-03-27T02:16:04Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Prompt-Guided Adaptive Model Transformation for Whole Slide Image Classification [27.21493446754789]
スライド画像全体(WSI)を分類する一般的な方法として,Multiple Case Learning (MIL)が登場した。
本稿では,事前学習したモデルを病理組織学データの特定の特性にシームレスに適応するPrompt-Guided Adaptive Model Transformationフレームワークを提案する。
我々は,Camelyon16とTCGA-NSCLCの2つのデータセットに対するアプローチを厳格に評価し,様々なMILモデルに対して大幅な改善を行った。
論文 参考訳(メタデータ) (2024-03-19T08:23:12Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation [4.5869791542071]
本稿では,スライド画像全体(WSI)をデジタル病理学で処理するためのグラフ構造化多重画像化フレームワークGRASPを提案する。
我々のアプローチは、WSIの処理における病理学者の振舞いと、WSIの階層構造から得られる利益をエミュレートするために設計されている。
従来のプール機構の代わりに収束ベースのノードアグリゲーションを導入するGRASPは、2つの異なるがんデータセットに対して最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-02-06T00:03:44Z) - Domain-Specific Pre-training Improves Confidence in Whole Slide Image
Classification [15.354256205808273]
デジタル病理学では、全スライド画像(WSI)や病理像が用いられる。
WSIは、臨床診断のためのディープラーニングモデルに大きな課題を提起する。
論文 参考訳(メタデータ) (2023-02-20T08:42:06Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。