Amplifying Machine Learning Attacks Through Strategic Compositions
- URL: http://arxiv.org/abs/2506.18870v1
- Date: Mon, 23 Jun 2025 17:38:48 GMT
- Title: Amplifying Machine Learning Attacks Through Strategic Compositions
- Authors: Yugeng Liu, Zheng Li, Hai Huang, Michael Backes, Yang Zhang,
- Abstract summary: We focus on four well-studied attacks during the model's inference phase: adversarial examples, attribute inference, membership inference, and property inference.<n>We identify four effective attack compositions, such as property inference assisting attribute inference at its preparation level and adversarial examples assisting property inference at its execution level.<n>Our work serves as a call for researchers and practitioners to consider advanced adversarial settings involving multiple attack strategies.
- Score: 25.796285779866686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) models are proving to be vulnerable to a variety of attacks that allow the adversary to learn sensitive information, cause mispredictions, and more. While these attacks have been extensively studied, current research predominantly focuses on analyzing each attack type individually. In practice, however, adversaries may employ multiple attack strategies simultaneously rather than relying on a single approach. This prompts a crucial yet underexplored question: When the adversary has multiple attacks at their disposal, are they able to mount or amplify the effect of one attack with another? In this paper, we take the first step in studying the strategic interactions among different attacks, which we define as attack compositions. Specifically, we focus on four well-studied attacks during the model's inference phase: adversarial examples, attribute inference, membership inference, and property inference. To facilitate the study of their interactions, we propose a taxonomy based on three stages of the attack pipeline: preparation, execution, and evaluation. Using this taxonomy, we identify four effective attack compositions, such as property inference assisting attribute inference at its preparation level and adversarial examples assisting property inference at its execution level. We conduct extensive experiments on the attack compositions using three ML model architectures and three benchmark image datasets. Empirical results demonstrate the effectiveness of these four attack compositions. We implement and release a modular reusable toolkit, COAT. Arguably, our work serves as a call for researchers and practitioners to consider advanced adversarial settings involving multiple attack strategies, aiming to strengthen the security and robustness of AI systems.
Related papers
- Preference Poisoning Attacks on Reward Model Learning [47.00395978031771]
We investigate the nature and extent of a vulnerability in learning reward models from pairwise comparisons.
We propose two classes of algorithmic approaches for these attacks: a gradient-based framework, and several variants of rank-by-distance methods.
We find that the best attacks are often highly successful, achieving in the most extreme case 100% success rate with only 0.3% of the data poisoned.
arXiv Detail & Related papers (2024-02-02T21:45:24Z) - The Space of Adversarial Strategies [6.295859509997257]
Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade.
We propose a systematic approach to characterize worst-case (i.e., optimal) adversaries.
arXiv Detail & Related papers (2022-09-09T20:53:11Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
We present a large-scale measurement of different membership inference attacks and defenses.
We find that some assumptions of the threat model, such as same-architecture and same-distribution between shadow and target models, are unnecessary.
We are also the first to execute attacks on the real-world data collected from the Internet, instead of laboratory datasets.
arXiv Detail & Related papers (2022-08-22T17:00:53Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
We study PAC learnability and certification under instance-targeted poisoning attacks.
We show that when the budget of the adversary scales sublinearly with the sample complexity, PAC learnability and certification are achievable.
We empirically study the robustness of K nearest neighbour, logistic regression, multi-layer perceptron, and convolutional neural network on real data sets.
arXiv Detail & Related papers (2021-05-18T17:48:15Z) - Robust Federated Learning with Attack-Adaptive Aggregation [45.60981228410952]
Federated learning is vulnerable to various attacks, such as model poisoning and backdoor attacks.
We propose an attack-adaptive aggregation strategy to defend against various attacks for robust learning.
arXiv Detail & Related papers (2021-02-10T04:23:23Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems [47.70973322193384]
Adversarial attacks pose significant challenges for detecting them at an early stage.
We propose attack-agnostic detection on reinforcement learning-based interactive recommendation systems.
We first craft adversarial examples to show their diverse distributions and then augment recommendation systems by detecting potential attacks.
arXiv Detail & Related papers (2020-06-14T15:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.