Connecting Vision and Emissions: A Behavioural AI Approach to Carbon Estimation in Road Design
- URL: http://arxiv.org/abs/2506.18924v1
- Date: Wed, 18 Jun 2025 11:50:24 GMT
- Title: Connecting Vision and Emissions: A Behavioural AI Approach to Carbon Estimation in Road Design
- Authors: Ammar K Al Mhdawi, Nonso Nnamoko, Safanah Mudheher Raafat, M. K. S. Al-Mhdawi, Amjad J Humaidi,
- Abstract summary: We present an enhanced YOLOv8 real time vehicle detection and classification framework, for estimating carbon emissions in urban environments.<n>The framework incorporates a hybrid pipeline where each detected vehicle is tracked and its bounding box is cropped and passed to a deep Optical Character Recognition (OCR) module.<n>This OCR system, composed of multiple convolutional neural network (CNN) layers, is trained specifically for character-level detection and license plate decoding.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an enhanced YOLOv8 real time vehicle detection and classification framework, for estimating carbon emissions in urban environments. The system enhances YOLOv8 architecture to detect, segment, and track vehicles from live traffic video streams. Once a vehicle is localized, a dedicated deep learning-based identification module is employed to recognize license plates and classify vehicle types. Since YOLOv8 lacks the built-in capacity for fine grained recognition tasks such as reading license plates or determining vehicle attributes beyond class labels, our framework incorporates a hybrid pipeline where each detected vehicle is tracked and its bounding box is cropped and passed to a deep Optical Character Recognition (OCR) module. This OCR system, composed of multiple convolutional neural network (CNN) layers, is trained specifically for character-level detection and license plate decoding under varied conditions such as motion blur, occlusion, and diverse font styles. Additionally, the recognized plate information is validated using a real time API that cross references with an external vehicle registration database to ensure accurate classification and emission estimation. This multi-stage approach enables precise, automated calculation of per vehicle carbon emissions. Extensive evaluation was conducted using a diverse vehicle dataset enriched with segmentation masks and annotated license plates. The YOLOv8 detector achieved a mean Average Precision (mAP@0.5) of approximately 71% for bounding boxes and 70% for segmentation masks. Character level OCR accuracy reached up to 99% with the best performing CNN model. These results affirm the feasibility of combining real time object detection with deep OCR for practical deployment in smart transportation systems, offering a scalable solution for automated, vehicle specific carbon emission monitoring.
Related papers
- Floating Car Observers in Intelligent Transportation Systems: Detection Modeling and Temporal Insights [1.7205106391379021]
Floating Car Observers (FCOs) extend traditional Floating Car Data (FCD) by integrating onboard sensors to detect and localize other traffic participants.<n>We explore various modeling approaches for FCO detections within microscopic traffic simulations to evaluate their potential for Intelligent Transportation System (ITS) applications.
arXiv Detail & Related papers (2025-04-29T19:38:13Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - End-to-End License Plate Recognition Pipeline for Real-time Low Resource
Video Based Applications [0.43012765978447565]
We propose a novel two-stage detection pipeline paired with Vision API to provide real-time inference speed.
We trained our models on an image dataset and a video dataset containing license plates in the wild.
We observed reasonable detection and recognition performance with real-time processing speed (27.2 frames per second)
arXiv Detail & Related papers (2021-08-18T18:31:01Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - LittleYOLO-SPP: A Delicate Real-Time Vehicle Detection Algorithm [0.0]
Existing real-time vehicle detection lacks accuracy and speed.
LittleYOLO-SPP network detects the vehicle in real-time with high accuracy regardless of video frame and weather conditions.
arXiv Detail & Related papers (2020-11-11T17:57:49Z) - Towards End-to-end Car License Plate Location and Recognition in
Unconstrained Scenarios [0.0]
We present an efficient framework to solve the license plate detection and recognition tasks simultaneously.
It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time.
Experimental results indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision.
arXiv Detail & Related papers (2020-08-25T09:51:33Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
We propose to build a large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets.
We design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet.
We achieve the state-of-art accuracy of 86.07% mAP on the private test set of AICity Challenge.
arXiv Detail & Related papers (2020-04-14T05:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.