LittleYOLO-SPP: A Delicate Real-Time Vehicle Detection Algorithm
- URL: http://arxiv.org/abs/2011.05940v1
- Date: Wed, 11 Nov 2020 17:57:49 GMT
- Title: LittleYOLO-SPP: A Delicate Real-Time Vehicle Detection Algorithm
- Authors: Sri Jamiya S, Esther Rani P
- Abstract summary: Existing real-time vehicle detection lacks accuracy and speed.
LittleYOLO-SPP network detects the vehicle in real-time with high accuracy regardless of video frame and weather conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Vehicle detection in real-time is a challenging and important task. The
existing real-time vehicle detection lacks accuracy and speed. Real-time
systems must detect and locate vehicles during criminal activities like theft
of vehicle and road traffic violations with high accuracy. Detection of
vehicles in complex scenes with occlusion is also extremely difficult. In this
study, a lightweight model of deep neural network LittleYOLO-SPP based on the
YOLOv3-tiny network is proposed to detect vehicles effectively in real-time.
The YOLOv3-tiny object detection network is improved by modifying its feature
extraction network to increase the speed and accuracy of vehicle detection. The
proposed network incorporated Spatial pyramid pooling into the network, which
consists of different scales of pooling layers for concatenation of features to
enhance network learning capability. The Mean square error (MSE) and
Generalized IoU (GIoU) loss function for bounding box regression is used to
increase the performance of the network. The network training includes
vehicle-based classes from PASCAL VOC 2007,2012 and MS COCO 2014 datasets such
as car, bus, and truck. LittleYOLO-SPP network detects the vehicle in real-time
with high accuracy regardless of video frame and weather conditions. The
improved network achieves a higher mAP of 77.44% on PASCAL VOC and 52.95% mAP
on MS COCO datasets.
Related papers
- FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
arXiv Detail & Related papers (2024-06-05T20:06:59Z) - Elastic Interaction Energy-Informed Real-Time Traffic Scene Perception [8.429178814528617]
A topology-aware energy loss function-based network training strategy named EIEGSeg is proposed.
EIEGSeg is designed for multi-class segmentation on real-time traffic scene perception.
Our results demonstrate that EIEGSeg consistently improves the performance, especially on real-time, lightweight networks.
arXiv Detail & Related papers (2023-10-02T01:30:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Fast vehicle detection algorithm based on lightweight YOLO7-tiny [7.7600847187608135]
This paper proposes a lightweight vehicle detection algorithm based on YOLOv7-tiny (You Only Look Once version seven) called Ghost-YOLOv7.
The width of model is scaled to 0.5 and the standard convolution of the backbone network is replaced with Ghost convolution to achieve a lighter network and improve the detection speed.
A Ghost Decouoled Head (GDH) is employed for accurate prediction of vehicle location and species.
arXiv Detail & Related papers (2023-04-12T17:28:30Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
We propose an improved feature pyramid model, named AF-FPN, which utilize the adaptive attention module (AAM) and feature enhancement module (FEM) to reduce the information loss in the process of feature map generation.
We replace the original feature pyramid network in YOLOv5 with AF-FPN, which improves the detection performance for multi-scale targets of the YOLOv5 network.
arXiv Detail & Related papers (2021-12-16T11:02:12Z) - A Single-Target License Plate Detection with Attention [56.83051142257412]
Neural Network is commonly adopted to the License Plate Detection (LPD) task and achieves much better performance and precision, especially CNN-based networks can achieve state of the art RetinaNet.
For a single object detection task such as LPD, modified general object detection would be time-consuming, unable to cope with complex scenarios and a cumbersome weights file that is too hard to deploy on the embedded device.
arXiv Detail & Related papers (2021-12-12T03:00:03Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.