Entropy from scattering in weakly interacting systems
- URL: http://arxiv.org/abs/2506.19127v2
- Date: Fri, 27 Jun 2025 19:54:51 GMT
- Title: Entropy from scattering in weakly interacting systems
- Authors: Duncan MacIntyre, Gordon W. Semenoff,
- Abstract summary: We find surprisingly simple criteria for the initial state and the scattering matrix that guarantee that the subsystem entropy increases.<n>The class of states that meet these criteria are more correlated than simple product states of the subsystems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perturbation theory is used to investigate the evolution of the von Neumann entropy of a subsystem of a bipartite quantum system in the course of a gedanken scattering experiment. We find surprisingly simple criteria for the initial state and the scattering matrix that guarantee that the subsystem entropy increases. The class of states that meet these criteria are more correlated than simple product states of the subsystems. They form a subclass of the set of all separable states, and they can therefore be assembled by classical processes alone.
Related papers
- Uncertainty, von Neumann Entropy, and Squeezing in a Bipartite State of Two-Level Atoms [0.0]
We show that when the bipartite state is entangled, the von Neumann entropy of the composite state is less than those of the subsystems.<n>This is in contradiction with the prevailing idea that the greater the entropy, the greater the uncertainty.
arXiv Detail & Related papers (2025-02-08T14:22:28Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Predictive complexity of quantum subsystems [0.0]
We define predictive states and predictive complexity for quantum systems composed of distinct subsystems.
Predictions are formed by equivalence classes of state vectors in the exterior Hilbert space.
It can also serve as a local order parameter that can distinguish long and short range entanglement.
arXiv Detail & Related papers (2023-09-26T18:58:56Z) - Canonical typicality under general quantum channels [39.58317527488534]
In the present work we employ quantum channels to define generalized subsystems.
We show that generalized subsystems also display the phenomena of canonical typicality.
In particular we demonstrate that the property regulating the emergence of the canonical typicality behavior is the entropy of the channel used to define the generalized subsystem.
arXiv Detail & Related papers (2023-08-30T21:29:45Z) - Phenomenological Non-Equilibrium Quantum Thermodynamics based on
Modified von Neumann Equations [0.0]
Original quantum mechanics is a reversible theory, but only for undecomposed systems.
Taking sub-systems into account, as it is by definition necessary for decomposed systems, the interaction Hamiltonians which are absent in undecomposed systems generate irreversibility.
arXiv Detail & Related papers (2022-11-22T20:16:32Z) - Entanglement Emerges from Dissipation-Structured Quantum
Self-Organization [12.18859145788751]
Entanglement is a holistic property of multipartite quantum systems.
Dissipative structure theory directs the evolving time arrow of a non-equilibrium system.
Entanglement can emerge via the dissipation-structured correlation.
arXiv Detail & Related papers (2021-09-25T08:39:18Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems [5.524804393257921]
We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems.
We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
arXiv Detail & Related papers (2021-05-12T12:52:40Z) - Canonical density matrices from eigenstates of mixed systems [0.0]
We study the emergence of thermal states in the regime of a quantum analog of a mixed phase space.
Our system can be tuned by means of a single parameter from quantum integrability to quantum chaos.
arXiv Detail & Related papers (2021-03-10T10:19:05Z) - Expectation Synchronization Synthesis in Non-Markovian Open Quantum
Systems [15.285806487845036]
We investigate the problem of engineering synchronization in non-Markovian quantum systems.
For two homogenous subsystems, synchronization can always be synthesized without designing direct Hamiltonian coupling.
System parameters are explicitly designed to achieve quantum synchronization.
arXiv Detail & Related papers (2021-01-04T08:46:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.