Discrepancy-Aware Graph Mask Auto-Encoder
- URL: http://arxiv.org/abs/2506.19343v1
- Date: Tue, 24 Jun 2025 06:15:44 GMT
- Title: Discrepancy-Aware Graph Mask Auto-Encoder
- Authors: Ziyu Zheng, Yaming Yang, Ziyu Guan, Wei Zhao, Weigang Lu,
- Abstract summary: Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning.<n>We propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE)<n>It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process.
- Score: 14.452589880736523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
Related papers
- Graph Positional Autoencoders as Self-supervised Learners [42.78083704462157]
Graph autoencoders (GAEs) take incomplete graphs as input and predict missing elements, such as masked nodes or edges.<n>We propose Graph Positional Autoencoders (GraphPAE), which employs a dual-path architecture to reconstruct both node features and positions.<n>We conduct extensive experiments to verify the effectiveness of GraphPAE, including heterophilic node classification, graph property prediction, and transfer learning.
arXiv Detail & Related papers (2025-05-29T11:10:11Z) - Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck [5.707725771108279]
We propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification.
Our method significantly outperforms existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-01T05:45:21Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Permutation-Invariant Variational Autoencoder for Graph-Level
Representation Learning [0.0]
We propose a permutation-invariant variational autoencoder for graph structured data.
Our model indirectly learns to match the node ordering of input and output graph, without imposing a particular node ordering.
We demonstrate the effectiveness of our proposed model on various graph reconstruction and generation tasks.
arXiv Detail & Related papers (2021-04-20T09:44:41Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Graph Highway Networks [77.38665506495553]
Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency.
They suffer from the notorious over-smoothing problem, in which the learned representations converge to alike vectors when many layers are stacked.
We propose Graph Highway Networks (GHNet) which utilize gating units to balance the trade-off between homogeneity and heterogeneity in the GCN learning process.
arXiv Detail & Related papers (2020-04-09T16:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.