論文の概要: A Global-Local Cross-Attention Network for Ultra-high Resolution Remote Sensing Image Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2506.19406v1
- Date: Tue, 24 Jun 2025 08:20:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.545698
- Title: A Global-Local Cross-Attention Network for Ultra-high Resolution Remote Sensing Image Semantic Segmentation
- Title(参考訳): 超高分解能リモートセンシング画像セマンティックセグメンテーションのためのグローバルローカルクロスアテンションネットワーク
- Authors: Chen Yi, Shan LianLei,
- Abstract要約: GLCANetはUHRリモートセンシングのための軽量セグメンテーションフレームワークである。
セルフアテンションメカニズムは、長距離依存関係を強化し、グローバル機能を強化し、セマンティック一貫性を改善するためにローカル詳細を保存する。
マスク付きクロスアテンション機構は、グローバルローカルな特徴を適応的に融合させ、グローバルコンテキストを活用しながら細かな詳細を選択的に強化し、セグメンテーション精度を向上させる。
- 参考スコア(独自算出の注目度): 1.833928124984226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of ultra-high resolution (UHR) remote sensing technology, the demand for accurate and efficient semantic segmentation has increased significantly. However, existing methods face challenges in computational efficiency and multi-scale feature fusion. To address these issues, we propose GLCANet (Global-Local Cross-Attention Network), a lightweight segmentation framework designed for UHR remote sensing imagery.GLCANet employs a dual-stream architecture to efficiently fuse global semantics and local details while minimizing GPU usage. A self-attention mechanism enhances long-range dependencies, refines global features, and preserves local details for better semantic consistency. A masked cross-attention mechanism also adaptively fuses global-local features, selectively enhancing fine-grained details while exploiting global context to improve segmentation accuracy. Experimental results show that GLCANet outperforms state-of-the-art methods regarding accuracy and computational efficiency. The model effectively processes large, high-resolution images with a small memory footprint, providing a promising solution for real-world remote sensing applications.
- Abstract(参考訳): 超高分解能リモートセンシング技術(UHR)の急速な発展に伴い,高精度かつ効率的なセマンティックセグメンテーションの需要が大幅に増加した。
しかし、既存の手法は計算効率とマルチスケール機能融合の課題に直面している。
これらの問題に対処するため、UHRリモートセンシング画像用に設計された軽量セグメンテーションフレームワークであるGLCANet(Global-Local Cross-Attention Network)を提案する。
セルフアテンションメカニズムは、長距離依存関係を強化し、グローバル機能を強化し、セマンティック一貫性を改善するためにローカル詳細を保存する。
マスク付きクロスアテンション機構は、グローバルローカルな特徴を適応的に融合させ、グローバルコンテキストを活用しながら細かな詳細を選択的に強化し、セグメンテーション精度を向上させる。
実験の結果,GLCANetは精度と計算効率に関して最先端の手法よりも優れていた。
このモデルは、メモリフットプリントが小さい大規模な高解像度画像を効果的に処理し、現実世界のリモートセンシングアプリケーションに有望なソリューションを提供する。
関連論文リスト
- MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection [10.135137525886098]
UAV画像の小さな物体検出は、探索・救助、交通監視、環境監視といった用途に不可欠である。
既存のマルチスケール融合法は、計算負荷を増し、詳細をぼかすのに役立つ。
本稿では,グローバルコンテキストと局所的な詳細を密結合して検出性能を向上させる統合融合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-15T02:54:25Z) - Breaking Complexity Barriers: High-Resolution Image Restoration with Rank Enhanced Linear Attention [54.42902794496325]
ソフトマックスアテンションの変種である線形アテンションは、グローバルコンテキストモデリングにおける約束を示す。
軽量な奥行き畳み込みを統合することで特徴表現を充実させる簡易かつ効果的な方法であるRランク拡張線形アテンション(RELA)を提案する。
本稿では,RELA をベースとした画像復元変換器 LAformer を提案する。
論文 参考訳(メタデータ) (2025-05-22T02:57:23Z) - Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution [9.666827340439669]
単画像超解像(SISR)は測定システムの精度と信頼性を高める上で重要な役割を担っている。
軽量SISRのためのSGGLC-Net(Semantic-Guided Global-Local Collaborative Network)を提案する。
論文 参考訳(メタデータ) (2025-03-20T11:43:55Z) - HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation [12.606794661369959]
骨盤病変分割のための簡易高分解能デコーダネットワークHRDecoderを提案する。
高精細な局所的特徴を捉えるための高精細な表現学習モジュールと、マルチスケールの予測を融合する高精細な融合モジュールを統合している。
本手法は, 適正なメモリと計算オーバーヘッドを消費し, 推論速度の満足度を維持しながら, 足底部病変の全体的なセグメンテーション精度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-11-06T15:13:31Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。