Evaluating the Deductive Competence of Large Language Models
- URL: http://arxiv.org/abs/2309.05452v2
- Date: Mon, 15 Apr 2024 13:01:30 GMT
- Title: Evaluating the Deductive Competence of Large Language Models
- Authors: Spencer M. Seals, Valerie L. Shalin,
- Abstract summary: We investigate whether several large language models (LLMs) can solve a classic type of deductive reasoning problem.
We do find performance differences between conditions; however, they do not improve overall performance.
We find that performance interacts with presentation format and content in unexpected ways that differ from human performance.
- Score: 0.2218292673050528
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The development of highly fluent large language models (LLMs) has prompted increased interest in assessing their reasoning and problem-solving capabilities. We investigate whether several LLMs can solve a classic type of deductive reasoning problem from the cognitive science literature. The tested LLMs have limited abilities to solve these problems in their conventional form. We performed follow up experiments to investigate if changes to the presentation format and content improve model performance. We do find performance differences between conditions; however, they do not improve overall performance. Moreover, we find that performance interacts with presentation format and content in unexpected ways that differ from human performance. Overall, our results suggest that LLMs have unique reasoning biases that are only partially predicted from human reasoning performance and the human-generated language corpora that informs them.
Related papers
- Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
We present a pipeline (MQArgEng) to evaluate the effect of introducing computational argumentation semantics on the performance of Large Language Models (LLMs)
Exploratory results indicate that MQArgEng provides a moderate performance gain in most of the examined topical categories and, as such, show promise and warrant further research.
arXiv Detail & Related papers (2024-05-16T22:09:31Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Learning From Correctness Without Prompting Makes LLM Efficient Reasoner [30.203952806009717]
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content.
We introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts.
arXiv Detail & Related papers (2024-03-28T02:12:49Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Are Large Language Models Good Fact Checkers: A Preliminary Study [26.023148371263012]
Large Language Models (LLMs) have drawn significant attention due to their outstanding reasoning capabilities and extensive knowledge repository.
This study aims to comprehensively evaluate various LLMs in tackling specific fact-checking subtasks.
arXiv Detail & Related papers (2023-11-29T05:04:52Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Large Language Models Are Not Strong Abstract Reasoners [12.354660792999269]
Large Language Models have shown tremendous performance on a variety of natural language processing tasks.
It is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed.
We introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks.
arXiv Detail & Related papers (2023-05-31T04:50:29Z) - Can Pretrained Language Models (Yet) Reason Deductively? [72.9103833294272]
We conduct a comprehensive evaluation of the learnable deductive (also known as explicit) reasoning capability of PLMs.
Our main results suggest that PLMs cannot yet perform reliable deductive reasoning.
We reach beyond (misleading) task performance, revealing that PLMs are still far from human-level reasoning capabilities.
arXiv Detail & Related papers (2022-10-12T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.