論文の概要: Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs
- arxiv url: http://arxiv.org/abs/2408.04491v1
- Date: Thu, 8 Aug 2024 14:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:18:18.484629
- Title: Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs
- Title(参考訳): MRIにおける体積肝硬変の相乗的深層学習モデルに向けて
- Authors: Vandan Gorade, Onkar Susladkar, Gorkem Durak, Elif Keles, Ertugrul Aktas, Timurhan Cebeci, Alpay Medetalibeyoglu, Daniela Ladner, Debesh Jha, Ulas Bagci,
- Abstract要約: 世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
本稿では、補間潜在空間を拡張的特徴相互作用モデリングに活用する新しい相乗論的理論を提案する。
- 参考スコア(独自算出の注目度): 1.5228650878164722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Liver cirrhosis, a leading cause of global mortality, requires precise segmentation of ROIs for effective disease monitoring and treatment planning. Existing segmentation models often fail to capture complex feature interactions and generalize across diverse datasets. To address these limitations, we propose a novel synergistic theory that leverages complementary latent spaces for enhanced feature interaction modeling. Our proposed architecture, nnSynergyNet3D integrates continuous and discrete latent spaces for 3D volumes and features auto-configured training. This approach captures both fine-grained and coarse features, enabling effective modeling of intricate feature interactions. We empirically validated nnSynergyNet3D on a private dataset of 628 high-resolution T1 abdominal MRI scans from 339 patients. Our model outperformed the baseline nnUNet3D by approximately 2%. Additionally, zero-shot testing on healthy liver CT scans from the public LiTS dataset demonstrated superior cross-modal generalization capabilities. These results highlight the potential of synergistic latent space models to improve segmentation accuracy and robustness, thereby enhancing clinical workflows by ensuring consistency across CT and MRI modalities.
- Abstract(参考訳): 世界的死亡の主な原因である肝硬変は、効果的な疾患モニタリングと治療計画のためにROIを正確に区分する必要がある。
既存のセグメンテーションモデルは、複雑な機能インタラクションをキャプチャして、さまざまなデータセットをまたいだ一般化に失敗することが多い。
これらの制約に対処するため,機能相互作用モデリングの強化に相補的な潜在空間を利用する新しい相乗的理論を提案する。
提案アーキテクチャであるnnSynergyNet3Dは,3次元ボリュームのための連続および離散的な潜伏空間を統合し,自動構成トレーニングを特徴とする。
このアプローチはきめ細かな特徴と粗い特徴の両方を捉え、複雑な特徴相互作用の効果的なモデリングを可能にする。
339例の高分解能T1腹部MRIのプライベートデータセットを用いてnnSynergyNet3Dを実験的に検証した。
我々のモデルはベースラインであるnnUNet3Dを約2%上回った。
さらに、公衆のLiTSデータセットから正常な肝CTスキャンのゼロショットテストでは、より優れたクロスモーダル一般化能力が示された。
これらの結果は, セグメンテーション精度とロバスト性を向上させるための相乗的潜在空間モデルの可能性を強調した。
関連論文リスト
- Enhanced segmentation of femoral bone metastasis in CT scans of patients using synthetic data generation with 3D diffusion models [0.06700983301090582]
本稿では,3次元拡散確率モデル(DDPM)を用いた自動データパイプラインを提案する。
5675巻を新たに作成し,実データと合成データに基づいて3次元U-Netセグメンテーションモデルを訓練し,セグメンテーション性能を比較した。
論文 参考訳(メタデータ) (2024-09-17T09:21:19Z) - SpineMamba: Enhancing 3D Spinal Segmentation in Clinical Imaging through Residual Visual Mamba Layers and Shape Priors [10.431439196002842]
本研究では,3次元脊髄データの深部意味的特徴と長距離空間依存性をモデル化するための残留視覚的マンバ層を提案する。
また, 医療画像から脊椎の解剖学的情報を抽出する新規な脊髄形状先行モジュールを提案する。
SpineMambaはセグメンテーション性能が優れており、最大2ポイントを超える。
論文 参考訳(メタデータ) (2024-08-28T15:59:40Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
本稿では,ボリュームデータ生成の複雑さに対処するスライスに基づく遅延拡散アーキテクチャを提案する。
この手法は,医療用画像と関連するマスクの同時分布モデルを拡張し,データスカース体制下での同時生成を可能にする。
構造は, 大きさ, 形状, 相対位置などの腫瘍特性によって調節できるため, 腫瘍の多様性は様々である。
論文 参考訳(メタデータ) (2024-06-08T09:53:45Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - SynergyNet: Bridging the Gap between Discrete and Continuous
Representations for Precise Medical Image Segmentation [4.562266115935329]
既存のエンコーダ/デコーダセグメンテーションフレームワークを強化するために設計された新しいボトルネックアーキテクチャであるSynergyNetを提案する。
マルチオーガナイズドセグメンテーションと心的データセットを用いた実験により,SynergyNetが他の技術手法よりも優れていることが示された。
我々の革新的なアプローチは、医用画像解析の重要な領域において、ディープラーニングモデルの全体的な性能と能力を高める方法である。
論文 参考訳(メタデータ) (2023-10-26T20:13:44Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
本稿では,患者のCT画像に対する腫瘍分割モデルMPU-Netを提案する。
グローバルアテンション機構を備えたTransformerにインスパイアされている。
ベンチマークモデルであるU-Netと比較して、MPU-Netは優れたセグメンテーション結果を示す。
論文 参考訳(メタデータ) (2023-07-11T20:46:19Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。