Realization of pure gyration in an on-chip superconducting microwave device
- URL: http://arxiv.org/abs/2506.19912v1
- Date: Tue, 24 Jun 2025 18:00:03 GMT
- Title: Realization of pure gyration in an on-chip superconducting microwave device
- Authors: Zhiyin Tu, Violet Workman, Gaurav Bahl, Alicia J. Kollár,
- Abstract summary: A crucial requirement in non-reciprocal couplings and synthetic magnetic fields is the engineering of non-reciprocal couplings and synthetic magnetic fields.<n>Here we demonstrate that pure gyration can be realized between states using only-temporal modulation.<n>Our method is fully agnostic to physical implementation (classical or quantum) or frequency range and paves the way to large-scale non-reciprocal metamaterials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic materials that emulate tight-binding Hamiltonians have enabled a wide range of advances in topological and non-Hermitian physics. A crucial requirement in such systems is the engineering of non-reciprocal couplings and synthetic magnetic fields. More broadly, the development of these capabilities in a manner compatible with quantum-coherent degrees of freedom remains an outstanding challenge, particularly for superconducting circuits, which are highly sensitive to magnetic fields. Here we demonstrate that pure gyration -- a non-reciprocal coupling with exactly matched magnitude but non-reciprocal $\pi$ phase contrast -- can be realized between degenerate states using only spatio-temporal modulation. Our experiments are performed using microwave superconducting resonators that are modulated using dc-SQUID arrays. We first show the existence of continuous exceptional surfaces in modulation parameter space where coupling with arbitrarily-large magnitude contrast can be achieved, with robust volumes of $\pi$ phase contrast contained within. We then demonstrate that intersection of these volumes necessarily gives rise to new continuous surfaces in parameter space where pure gyration is achieved. With this we experimentally demonstrate $>58$ dB isolation and the first on-chip gyrator with only superconducting circuit elements. Our method is fully agnostic to physical implementation (classical or quantum) or frequency range and paves the way to large-scale non-reciprocal metamaterials.
Related papers
- Circulators based on Coupled Quantum Anomalous Hall Insulators and Resonators [19.42533070986258]
Integrated plasmonics is advancing rapidly, enabling a wide range of functionalities to be incorporated onto a single chip.<n>Non-reciprocal devices are essential for preventing unwanted feedback that can degrade system performance.<n>Here, we demonstrate that topological circulators utilizing asymmetric coupling offer improved input power range, isolation, and insertion loss.
arXiv Detail & Related papers (2025-05-12T17:21:43Z) - Evidence of P-wave Pairing in K$_2$Cr$_3$As$_3$ Superconductors from Phase-sensitive Measurement [26.69408771617283]
We study a recently discovered family of superconductors, A$$Cr$_3$As$_3$ (A = K, Rb, Cs)<n>We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K$$Cr$_3$As$_3$, and perform the phase-sensitive measurement.<n>We observe that such SQUIDs exhibit a pronounced second-order harmonic component sin (2$pi$) in the current-phase relation, suggesting the admixture of 0- and $pi$-phase.
arXiv Detail & Related papers (2024-08-14T07:34:45Z) - Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Quantum Coherence Tomography of Lightwave Controlled Superconductivity [0.06364409691582436]
Lightwave periodic driving of nearly dissipation-less currents has recently emerged as a universal control concept for superconducting (SC) and topological electronics applications.
We report the discovery of lightwave-controlled superconductivity via parametric time-periodic driving of strongly-coupled bands in iron-based superconductors.
We are able to measure non-perturbative, high-order correlations in this strongly-driven superconductivity by separating the THz multi-dimensional coherent spectra into conventional pump-probe, Higgs collective mode, and pronounced bi-Higgs frequency sideband peaks with highly nonlinear field dependence.
arXiv Detail & Related papers (2022-07-13T04:31:34Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Limit Cycle Phase and Goldstone Mode in Driven Dissipative Systems [0.0]
We investigate the first- and second-order quantum dissipative phase transitions of a three-mode cavity with a Hubbard interaction.
Our theoretical predictions suggest that interacting multimode photonic systems are rich, versatile testbeds for investigating the crossovers between the mean-field picture and quantum phase transitions.
arXiv Detail & Related papers (2020-07-21T09:37:18Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.