A Comparative Analysis of Reinforcement Learning and Conventional Deep Learning Approaches for Bearing Fault Diagnosis
- URL: http://arxiv.org/abs/2506.19929v1
- Date: Tue, 24 Jun 2025 18:06:57 GMT
- Title: A Comparative Analysis of Reinforcement Learning and Conventional Deep Learning Approaches for Bearing Fault Diagnosis
- Authors: Efe Çakır, Patrick Dumond,
- Abstract summary: Bearing faults in rotating machinery can lead to significant operational disruptions and maintenance costs.<n>Modern methods for bearing fault diagnosis rely heavily on vibration analysis and machine learning techniques.<n>This study explores the feasibility of reinforcement learning (RL) for bearing fault classification tasks in machine condition monitoring.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bearing faults in rotating machinery can lead to significant operational disruptions and maintenance costs. Modern methods for bearing fault diagnosis rely heavily on vibration analysis and machine learning techniques, which often require extensive labeled data and may not adapt well to dynamic environments. This study explores the feasibility of reinforcement learning (RL), specifically Deep Q-Networks (DQNs), for bearing fault classification tasks in machine condition monitoring to enhance the accuracy and adaptability of bearing fault diagnosis. The results demonstrate that while RL models developed in this study can match the performance of traditional supervised learning models under controlled conditions, they excel in adaptability when equipped with optimized reward structures. However, their computational demands highlight areas for further improvement. These findings demonstrate RL's potential to complement traditional methods, paving the way for adaptive diagnostic frameworks.
Related papers
- Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset [1.148237645450678]
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment.<n>Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL) and hybrid architectures for BRB faults.<n>This paper implements large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data.
arXiv Detail & Related papers (2025-01-07T12:40:11Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - A Closer Look at Bearing Fault Classification Approaches [1.9531938396288886]
Rolling bearing fault diagnosis has garnered increased attention in recent years.
Recent technological advances have enabled monitoring the health of these assets at scale.
Rolling bearing fault diagnosis has garnered increased attention in recent years.
arXiv Detail & Related papers (2023-09-29T06:11:11Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Foundational Models for Fault Diagnosis of Electrical Motors [0.29494468099506893]
This work proposes a framework to develop a foundational model for fault diagnosis of electrical motors.
It involves building a neural network-based backbone to learn high-level features using self-supervised learning, and then fine-tuning the backbone to achieve specific objectives.
arXiv Detail & Related papers (2023-07-31T17:58:16Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
Rolling bearings are subject to various faults due to its long-time operation under harsh environment.
Current deep learning methods perform the bearing fault diagnosis in the form of deterministic classification.
We develop a probabilistic fault diagnosis framework that can account for the uncertainty effect in prediction.
arXiv Detail & Related papers (2021-09-19T18:34:29Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
We propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML)
Case studies show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study.
arXiv Detail & Related papers (2020-07-25T04:03:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.