Foundational Models for Fault Diagnosis of Electrical Motors
- URL: http://arxiv.org/abs/2307.16891v1
- Date: Mon, 31 Jul 2023 17:58:16 GMT
- Title: Foundational Models for Fault Diagnosis of Electrical Motors
- Authors: Sriram Anbalagan, Deepesh Agarwal, Balasubramaniam Natarajan, Babji
Srinivasan
- Abstract summary: This work proposes a framework to develop a foundational model for fault diagnosis of electrical motors.
It involves building a neural network-based backbone to learn high-level features using self-supervised learning, and then fine-tuning the backbone to achieve specific objectives.
- Score: 0.29494468099506893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A majority of recent advancements related to the fault diagnosis of
electrical motors are based on the assumption that training and testing data
are drawn from the same distribution. However, the data distribution can vary
across different operating conditions during real-world operating scenarios of
electrical motors. Consequently, this assumption limits the practical
implementation of existing studies for fault diagnosis, as they rely on fully
labelled training data spanning all operating conditions and assume a
consistent distribution. This is because obtaining a large number of labelled
samples for several machines across different fault cases and operating
scenarios may be unfeasible. In order to overcome the aforementioned
limitations, this work proposes a framework to develop a foundational model for
fault diagnosis of electrical motors. It involves building a neural
network-based backbone to learn high-level features using self-supervised
learning, and then fine-tuning the backbone to achieve specific objectives. The
primary advantage of such an approach is that the backbone can be fine-tuned to
achieve a wide variety of target tasks using very less amount of training data
as compared to traditional supervised learning methodologies. The empirical
evaluation demonstrates the effectiveness of the proposed approach by obtaining
more than 90\% classification accuracy by fine-tuning the backbone not only
across different types of fault scenarios or operating conditions, but also
across different machines. This illustrates the promising potential of the
proposed approach for cross-machine fault diagnosis tasks in real-world
applications.
Related papers
- Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results.
An automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks.
Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.
arXiv Detail & Related papers (2020-08-11T11:59:48Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
We propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML)
Case studies show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study.
arXiv Detail & Related papers (2020-07-25T04:03:18Z) - Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults? [9.1591191545173]
Intermediate-Severity (IS) faults present milder symptoms compared to severe faults.
The lack of IS fault examples in the training data can pose severe risks to Fault Detection and Diagnosis (FDD) methods.
We discuss how to design more effective ensemble models for detecting and diagnosing IS faults.
arXiv Detail & Related papers (2020-07-07T02:05:04Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.