Quantum Neural Networks for Propensity Score Estimation and Survival Analysis in Observational Biomedical Studies
- URL: http://arxiv.org/abs/2506.19973v1
- Date: Tue, 24 Jun 2025 19:40:39 GMT
- Title: Quantum Neural Networks for Propensity Score Estimation and Survival Analysis in Observational Biomedical Studies
- Authors: Vojtěch Novák, Ivan Zelinka, Lenka Přibylová, Lubomír Martínek,
- Abstract summary: The application of quantum neural networks (QNNs) for propensity score estimation to address selection bias in comparing survival outcomes between laparoscopic and open surgical techniques in a cohort of 1177 colorectal carcinoma patients treated at University Hospital Ostrava (2001-2009)<n>The QNN architecture employed a linear ZFeatureMap for data encoding, a SummedPaulis operator for predictions, and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for robust, gradient-free optimization in noisy quantum environments.<n>These results highlight QNNs' potential, enhanced by CMA-ES and noise-aware strategies, to improve causal inference in biomedical research
- Score: 0.17999333451993949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the application of quantum neural networks (QNNs) for propensity score estimation to address selection bias in comparing survival outcomes between laparoscopic and open surgical techniques in a cohort of 1177 colorectal carcinoma patients treated at University Hospital Ostrava (2001-2009). Using a dataset with 77 variables, including patient demographics and tumor characteristics, we developed QNN-based propensity score models focusing on four key covariates (Age, Sex, Stage, BMI). The QNN architecture employed a linear ZFeatureMap for data encoding, a SummedPaulis operator for predictions, and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for robust, gradient-free optimization in noisy quantum environments. Variance regularization was integrated to mitigate quantum measurement noise, with simulations conducted under exact, sampling (1024 shots), and noisy hardware (FakeManhattanV2) conditions. QNNs, particularly with simulated hardware noise, outperformed classical logistic regression and gradient boosted machines in small samples (AUC up to 0.750 for n=100), with noise modeling enhancing predictive stability. Propensity score matching and weighting, optimized via genetic matching and matching weights, achieved covariate balance with standardized mean differences of 0.0849 and 0.0869, respectively. Survival analyses using Kaplan-Meier estimation, Cox proportional hazards, and Aalen additive regression revealed no significant survival differences post-adjustment (p-values 0.287-0.851), indicating confounding bias in unadjusted outcomes. These results highlight QNNs' potential, enhanced by CMA-ES and noise-aware strategies, to improve causal inference in biomedical research, particularly for small-sample, high-dimensional datasets.
Related papers
- Differentiated Thyroid Cancer Recurrence Classification Using Machine Learning Models and Bayesian Neural Networks with Varying Priors: A SHAP-Based Interpretation of the Best Performing Model [0.0]
Differentiated thyroid cancer DTC recurrence is a major public health concern.<n>This study introduces a comprehensive framework for DTC recurrence classification using a dataset containing 383 patients.
arXiv Detail & Related papers (2025-07-25T06:31:31Z) - Quantum Machine Learning for Predicting Anastomotic Leak: A Clinical Study [0.16777183511743468]
Anastomotic leak (AL) is a life-threatening complication following colorectal surgery.<n>This study explores the potential of Quantum Neural Networks (QNNs) for AL prediction.
arXiv Detail & Related papers (2025-06-02T14:13:10Z) - CNN-LSTM Hybrid Model for AI-Driven Prediction of COVID-19 Severity from Spike Sequences and Clinical Data [0.0]
We developed a CNN-LSTM hybrid model to predict COVID-19 severity using spike protein sequences and clinical data.<n>The model achieved an F1 score of 82.92%, ROC-AUC of 0.9084, precision of 83.56%, and recall of 82.85%.
arXiv Detail & Related papers (2025-05-29T16:20:54Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy [0.9999629695552196]
The present work develops and validates a data-driven and interpretable machine-learning framework designed to predict strokes.<n>Ten routinely gathered demographic, lifestyle, and clinical variables were sourced from a public cohort of 4,981 records.<n>The proposed model achieved an accuracy rate of 97.2% and an F1-score of 97.15%, indicating a significant enhancement compared to the leading individual model.
arXiv Detail & Related papers (2025-05-18T21:46:45Z) - Machine learning algorithms to predict stroke in China based on causal inference of time series analysis [1.7646715816998508]
This study proposes a stroke risk prediction method that combines dynamic causal inference with machine learning models.<n>The research results indicate that dynamic causal inference features have important value in predicting stroke risk.
arXiv Detail & Related papers (2025-03-10T14:45:43Z) - Comprehensive Methodology for Sample Augmentation in EEG Biomarker Studies for Alzheimers Risk Classification [0.0]
Alzheimer's disease (AD), the leading type, accounts for 70% of cases.<n>EEG measures show promise in identifying AD risk, but obtaining large samples for reliable comparisons is challenging.<n>This study integrates signal processing, harmonization, and statistical techniques to enhance sample size and improve AD risk classification reliability.
arXiv Detail & Related papers (2024-11-20T10:31:02Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - Inference for High Dimensional Censored Quantile Regression [8.993036560782137]
This paper proposes a novel procedure to draw inference on all predictors within the framework of global censored quantile regression.
We show that our procedure can properly quantify the uncertainty of the estimates in high dimensional settings.
We apply our method to analyze the heterogeneous effects of SNPs residing in lung cancer pathways on patients' survival.
arXiv Detail & Related papers (2021-07-22T23:57:06Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.