A Survey of Predictive Maintenance Methods: An Analysis of Prognostics via Classification and Regression
- URL: http://arxiv.org/abs/2506.20090v1
- Date: Wed, 25 Jun 2025 02:22:23 GMT
- Title: A Survey of Predictive Maintenance Methods: An Analysis of Prognostics via Classification and Regression
- Authors: Ainaz Jamshidi, Dongchan Kim, Muhammad Arif,
- Abstract summary: Predictive maintenance (PdM) has become a crucial element of modern industrial practice.<n>Machine learning and deep learning have enabled more precise forecasts of equipment failure and remaining useful life (RUL)<n>In this review, we look across a range of PdM methodologies, while focusing more strongly on the comparative use of classification and regression methods in prognostics.
- Score: 0.9802228981482947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive maintenance (PdM) has become a crucial element of modern industrial practice. PdM plays a significant role in operational dependability and cost management by decreasing unforeseen downtime and optimizing asset life cycle management. Machine learning and deep learning have enabled more precise forecasts of equipment failure and remaining useful life (RUL). Although many studies have been conducted on PdM, there has not yet been a standalone comparative study between regression- and classification-based approaches. In this review, we look across a range of PdM methodologies, while focusing more strongly on the comparative use of classification and regression methods in prognostics. While regression-based methods typically provide estimates of RUL, classification-based methods present a forecast of the probability of failure across defined time intervals. Through a comprehensive analysis of recent literature, we highlight key advancements, challenges-such as data imbalance and high-dimensional feature spaces-and emerging trends, including hybrid approaches and AI-enabled prognostic systems. This review aims to provide researchers and practitioners with an awareness of the strengths and compromises of various PdM methods and to help identify future research and build more robust, directed adaptive maintenance systems. Future work may include a systematic review of practical aspects such as public datasets, benchmarking platforms, and open-source tools to support the advancement of PdM research.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Distribution Learning for Molecular Regression [10.96062816455682]
Distributional Mixture of Experts (DMoE) is a model-independent, and data-independent method for regression.
We evaluate the performance of DMoE on different molecular property prediction datasets.
arXiv Detail & Related papers (2024-07-30T00:21:51Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding [76.67608003501479]
We introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, and a visualization toolkit.<n>We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators.<n>The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
monograph focuses on the exploration of various model-based and model-free approaches for Constrained within the context of average reward Markov Decision Processes (MDPs)
The primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs.
arXiv Detail & Related papers (2024-06-17T12:46:02Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
Large multimodal models (LMMs) have shown transformative potential across various research tasks.
Our findings indicate LMMs possess advantages in zero-shot learning, interpretability, and handling uncurated 'in-the-wild' inputs.
We propose a Chain-of-Thought augmented prompting approach, which effectively mitigates the off-target prediction issue.
arXiv Detail & Related papers (2024-05-24T16:26:56Z) - A Survey of Automatic Hallucination Evaluation on Natural Language Generation [18.277552023139847]
Large Language Models (LLMs) have introduced a critical challenge: accurate hallucination evaluation.<n>This survey addresses this critical gap through a comprehensive analysis of 74 evaluation methods.<n>We propose strategic directions, including enhanced interpretability mechanisms and integration of application-specific evaluation criteria.
arXiv Detail & Related papers (2024-04-18T09:52:18Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
We propose a general instrumented difference-in-differences (DiD) approach for learning the optimal treatment policy.
Specifically, we establish identification results using a binary instrumental variable (IV) when the parallel trends assumption fails to hold.
We also construct a Wald estimator, novel inverse probability estimators, and a class of semi efficient and multiply robust estimators.
arXiv Detail & Related papers (2023-10-14T09:38:32Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.