論文の概要: Directed Link Prediction using GNN with Local and Global Feature Fusion
- arxiv url: http://arxiv.org/abs/2506.20235v1
- Date: Wed, 25 Jun 2025 08:25:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.659172
- Title: Directed Link Prediction using GNN with Local and Global Feature Fusion
- Title(参考訳): 局所的・大域的特徴融合を用いたGNNによる直接リンク予測
- Authors: Yuyang Zhang, Xu Shen, Yu Xie, Ka-Chun Wong, Weidun Xie, Chengbin Peng,
- Abstract要約: リンク予測はグラフ解析における古典的な問題であり、多くの実用的な応用がある。
コミュニティ情報と融合する新しいグラフニューラルネットワーク(GNN)フレームワークを提案する。
当社の手法は, リンクの30%, 40%, 50%, 60%がトレーニングデータとして使用される場合, 最先端の手法よりも優れています。
- 参考スコア(独自算出の注目度): 20.470116080519585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction is a classical problem in graph analysis with many practical applications. For directed graphs, recently developed deep learning approaches typically analyze node similarities through contrastive learning and aggregate neighborhood information through graph convolutions. In this work, we propose a novel graph neural network (GNN) framework to fuse feature embedding with community information. We theoretically demonstrate that such hybrid features can improve the performance of directed link prediction. To utilize such features efficiently, we also propose an approach to transform input graphs into directed line graphs so that nodes in the transformed graph can aggregate more information during graph convolutions. Experiments on benchmark datasets show that our approach outperforms the state-of-the-art in most cases when 30%, 40%, 50%, and 60% of the connected links are used as training data, respectively.
- Abstract(参考訳): リンク予測はグラフ解析における古典的な問題であり、多くの実用的な応用がある。
有向グラフに対して、近年開発されたディープラーニングアプローチは、対照的な学習を通してノード類似性を解析し、グラフ畳み込みを通じて近隣情報を集約する。
本研究では,コミュニティ情報に組み込む特徴を融合する新しいグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には、このようなハイブリッド機能は、有向リンク予測の性能を向上させることができる。
また,これらの特徴を効率的に活用するために,入力グラフを有向線グラフに変換する手法を提案し,グラフ畳み込み時にグラフ内のノードがより多くの情報を集約できるようにする。
ベンチマークデータセットを用いた実験では, 接続リンクの30%, 40%, 50%, 60%がトレーニングデータとして使用される場合, 我々の手法は最先端の手法よりも優れていることがわかった。
関連論文リスト
- GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
ソースコードのないドメイン適応は、現実世界で多くのアプリケーションを含むため、重要な機械学習トピックである。
最近のグラフニューラルネットワーク(GNN)アプローチは、ドメインシフトとラベルの不足により、パフォーマンスが著しく低下する可能性がある。
本稿では, ソースフリーなグラフドメイン適応に適した Jigsaw (GALA) を用いたグラフ拡散に基づくアライメント法を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:32:46Z) - Graph Coarsening via Convolution Matching for Scalable Graph Neural
Network Training [22.411609128594982]
本稿では,畳み込みグラフを作成するためのCoarsening Via Convolution Matching (CONVMATCH)アルゴリズムと,高度にスケーラブルなA-CONVMATCHを提案する。
実世界のリンク予測とノード分類グラフデータセットを用いたCONVMATCHの評価を行った。
論文 参考訳(メタデータ) (2023-12-24T16:07:14Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - How Neural Processes Improve Graph Link Prediction [35.652234989200956]
リンク予測のためのグラフニューラルネットワークを用いたメタラーニング手法:グラフニューラルネットワークのためのニューラルプロセス(NPGNN)を提案する。
NPGNNは、トランスダクティブな学習タスクとインダクティブな学習タスクの両方を実行し、小さなサブグラフでトレーニングした後、大きな新しいグラフのパターンに適応することができる。
論文 参考訳(メタデータ) (2021-09-30T07:35:13Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。