Time-series surrogates from energy consumers generated by machine learning approaches for long-term forecasting scenarios
- URL: http://arxiv.org/abs/2506.20253v1
- Date: Wed, 25 Jun 2025 08:54:47 GMT
- Title: Time-series surrogates from energy consumers generated by machine learning approaches for long-term forecasting scenarios
- Authors: Ben Gerhards, Nikita Popkov, Annekatrin König, Marcel Arpogaus, Bastian Schäfermeier, Leonie Riedl, Stephan Vogt, Philip Hehlert,
- Abstract summary: We provide an in-depth evaluation of data-driven methods for generating synthetic time series data tailored to energy consumption long-term forecasting.<n>High-fidelity synthetic data is crucial for a wide range of applications, including state estimations in energy systems or power grid planning.<n>This study utilizes an open-source dataset from households in Germany with 15min time resolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting attracts a lot of research attention in the electricity value chain. However, most studies concentrate on short-term forecasting of generation or consumption with a focus on systems and less on individual consumers. Even more neglected is the topic of long-term forecasting of individual power consumption. Here, we provide an in-depth comparative evaluation of data-driven methods for generating synthetic time series data tailored to energy consumption long-term forecasting. High-fidelity synthetic data is crucial for a wide range of applications, including state estimations in energy systems or power grid planning. In this study, we assess and compare the performance of multiple state-of-the-art but less common techniques: a hybrid Wasserstein Generative Adversarial Network (WGAN), Denoising Diffusion Probabilistic Model (DDPM), Hidden Markov Model (HMM), and Masked Autoregressive Bernstein polynomial normalizing Flows (MABF). We analyze the ability of each method to replicate the temporal dynamics, long-range dependencies, and probabilistic transitions characteristic of individual energy consumption profiles. Our comparative evaluation highlights the strengths and limitations of: WGAN, DDPM, HMM and MABF aiding in selecting the most suitable approach for state estimations and other energy-related tasks. Our generation and analysis framework aims to enhance the accuracy and reliability of synthetic power consumption data while generating data that fulfills criteria like anonymisation - preserving privacy concerns mitigating risks of specific profiling of single customers. This study utilizes an open-source dataset from households in Germany with 15min time resolution. The generated synthetic power profiles can readily be used in applications like state estimations or consumption forecasting.
Related papers
- Short-Term Power Demand Forecasting for Diverse Consumer Types to Enhance Grid Planning and Synchronisation [0.0]
This study addresses the need for precise forecasting by differentiating among industrial, commercial, and residential consumers.<n>A variety of AI and machine learning algorithms for Short-Term Load Forecasting (STLF) and Very Short-Term Load Forecasting (VSTLF) are explored and compared.
arXiv Detail & Related papers (2025-06-04T12:01:11Z) - From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting [48.22398304557558]
We propose an Event-Response Knowledge Guided approach (ERKG) for residential load forecasting.<n>ERKG incorporates the estimation of electricity usage events for different appliances, mining event-related sparse knowledge from the load series.
arXiv Detail & Related papers (2025-01-06T05:53:38Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Differentially Private Publication of Electricity Time Series Data in Smart Grids [8.87717126222646]
Time-series of power consumption over geographical areas are valuable data sources to study consumer behavior and guide energy policy decisions.
However, publication of such data raises significant privacy issues, as it may reveal sensitive details about personal habits and lifestyles.
We introduce emT (S Private Timeseries), a novel method for DP-compliant publication of electricity consumption data.
arXiv Detail & Related papers (2024-08-24T23:30:09Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Creating synthetic energy meter data using conditional diffusion and building metadata [0.0]
The study proposes a conditional diffusion model for generating high-quality synthetic energy data using relevant metadata.
Using a dataset comprising 1,828 power meters from various buildings and countries, this model is compared with traditional methods.
Results demonstrate the proposed diffusion model's superior performance, with a 36% reduction in Frechet Inception Distance (FID) score and a 13% decrease in Kullback-Leibler divergence (KL divergence)
arXiv Detail & Related papers (2024-03-31T01:58:38Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers [1.1254693939127909]
We propose a novel horizontal privacy-preserving federated learning framework for energy load forecasting, namely FedREP.
We consider a federated learning system consisting of a control centre and multiple retailers by enabling multiple REPs to build a common, robust machine learning model without sharing data.
For forecasting, we use a state-of-the-art Long Short-Term Memory (LSTM) neural network due to its ability to learn long term sequences of observations.
arXiv Detail & Related papers (2022-03-01T04:16:19Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.