論文の概要: Towards Interpretable and Efficient Feature Selection in Trajectory Datasets: A Taxonomic Approach
- arxiv url: http://arxiv.org/abs/2506.20359v1
- Date: Wed, 25 Jun 2025 12:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.730284
- Title: Towards Interpretable and Efficient Feature Selection in Trajectory Datasets: A Taxonomic Approach
- Title(参考訳): 軌跡データセットの解釈的・効率的な特徴選択に向けて:分類学的アプローチ
- Authors: Chanuka Don Samarasinghage, Dhruv Gulabani,
- Abstract要約: 軌道解析は、物体が時空を移動するパターンを理解する上で、またその次の動きを予測する上で、最も重要である。
この分野への大きな関心から、データ収集は大幅に改善され、トレーニングや予測モデルで利用可能な多くの機能が利用可能になった。
これにより、データの効率性と解釈性が低下し、機械学習モデルの精度が低下する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory analysis is not only about obtaining movement data, but it is also of paramount importance in understanding the pattern in which an object moves through space and time, as well as in predicting its next move. Due to the significant interest in the area, data collection has improved substantially, resulting in a large number of features becoming available for training and predicting models. However, this introduces a high-dimensionality-induced feature explosion problem, which reduces the efficiency and interpretability of the data, thereby reducing the accuracy of machine learning models. To overcome this issue, feature selection has become one of the most prevalent tools. Thus, the objective of this paper was to introduce a taxonomy-based feature selection method that categorizes features based on their internal structure. This approach classifies the data into geometric and kinematic features, further categorizing them into curvature, indentation, speed, and acceleration. The comparative analysis indicated that a taxonomy-based approach consistently achieved comparable or superior predictive performance. Furthermore, due to the taxonomic grouping, which reduces combinatorial space, the time taken to select features was drastically reduced. The taxonomy was also used to gain insights into what feature sets each dataset was more sensitive to. Overall, this study provides robust evidence that a taxonomy-based feature selection method can add a layer of interpretability, reduce dimensionality and computational complexity, and contribute to high-level decision-making. It serves as a step toward providing a methodological framework for researchers and practitioners dealing with trajectory datasets and contributing to the broader field of explainable artificial intelligence.
- Abstract(参考訳): 軌道解析は運動データを得るだけでなく、物体が時空を移動するパターンを理解することや、次の動きを予測する上でも最重要となる。
この分野への大きな関心から、データ収集は大幅に改善され、トレーニングや予測モデルで利用可能な多くの機能が利用可能になった。
しかし、これは高次元性によって引き起こされる特徴爆発問題を導入し、データの効率性と解釈性を低下させ、機械学習モデルの精度を低下させる。
この問題を克服するため、機能選択は最も一般的なツールの1つになっている。
そこで本研究では,その内部構造に基づいて特徴を分類する分類学的特徴選択手法を提案する。
このアプローチは、データを幾何学的および運動学的特徴に分類し、さらに曲率、インデンテーション、速度、加速度に分類する。
比較分析は、分類学に基づくアプローチが一貫して比較または優れた予測性能を達成したことを示している。
さらに, 組換え空間を減少させる分類学的グループ化により, 選別に要する時間を大幅に短縮した。
分類は、各データセットがより敏感な機能セットについて、洞察を得るためにも使用された。
本研究は, 分類学に基づく特徴選択法が, 解釈可能性の層を付加し, 次元と計算の複雑さを低減し, 高い意思決定に寄与できることを示す。
これは、軌跡データセットを扱う研究者や実践者のための方法論的なフレームワークを提供するためのステップとして機能し、説明可能な人工知能の幅広い分野に貢献する。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - Topology-aware Reinforcement Feature Space Reconstruction for Graph Data [22.5530178427691]
優れた機能領域の再構築は、データのAI能力の向上、モデルの一般化の改善、下流MLモデルの可用性の向上に不可欠である。
我々は、トポロジ対応強化学習を用いて、グラフデータの特徴空間再構成を自動化し、最適化する。
提案手法では,コア部分グラフ抽出とグラフニューラルネットワーク(GNN)の併用により,トポロジ的特徴を符号化し,計算複雑性を低減する。
論文 参考訳(メタデータ) (2024-11-08T18:01:05Z) - Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
特徴の選択は、モデルの解釈可能性を高める上で重要な役割を担います。
決定木を集約することで得られる精度は、解釈可能性の犠牲となる。
この研究では、教師なしランダムな森林から特徴グラフを構築するための新しい手法を紹介した。
論文 参考訳(メタデータ) (2024-04-27T12:47:37Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparseは、一般化された加法モデルのファミリーから生まれた、新しい機械学習モデルである。
トレーニング中の非線形特徴選択プロセスを通じて、スパシティを促進する。
これにより、予測性能を犠牲にすることなく、モデル空間の改善による解釈可能性を保証する。
論文 参考訳(メタデータ) (2024-03-17T22:44:36Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Grouped Feature Importance and Combined Features Effect Plot [2.15867006052733]
解釈可能な機械学習は、機械学習アルゴリズムの人気が高まり、研究の活発な領域となっている。
機能グループに対して,既存のモデル非依存手法をどのように定義できるかを包括的に概観し,機能グループの重要性を評価した。
本稿では,特徴のスパースで解釈可能な線形結合に基づいて,特徴群の効果を可視化する手法である複合特徴効果プロットを提案する。
論文 参考訳(メタデータ) (2021-04-23T16:27:38Z) - Review of Swarm Intelligence-based Feature Selection Methods [3.8848561367220276]
高次元データセットを持つデータマイニングアプリケーションは、高速かつ精度が要求される。
次元削減手法の1つは、データマイニングタスクの精度を高める機能選択である。
最先端のSwarmインテリジェンスについて検討し、これらのアルゴリズムに基づく最近の特徴選択手法について概説する。
論文 参考訳(メタデータ) (2020-08-07T05:18:58Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。