論文の概要: Mixtures of Neural Cellular Automata: A Stochastic Framework for Growth Modelling and Self-Organization
- arxiv url: http://arxiv.org/abs/2506.20486v1
- Date: Wed, 25 Jun 2025 14:33:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-26 21:00:42.789332
- Title: Mixtures of Neural Cellular Automata: A Stochastic Framework for Growth Modelling and Self-Organization
- Title(参考訳): ニューラルセルオートマタの混合:成長モデリングと自己組織化のための確率的枠組み
- Authors: Salvatore Milite, Giulio Caravagna, Andrea Sottoriva,
- Abstract要約: Neural Cellular Automata (NCA)は、自己組織化プロセスをモデル化するための有望な新しいアプローチである。
NCAパラダイムに混合モデルの概念を取り入れた新しいフレームワークであるMNCA(Mixture of Neural Cellular Automata)を提案する。
1) 組織成長と分化の合成シミュレーション, (2) 画像形態形成の堅牢性, (3) 顕微鏡像のセグメンテーションの3つの主要な領域におけるMNCAの有効性を評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Cellular Automata (NCAs) are a promising new approach to model self-organizing processes, with potential applications in life science. However, their deterministic nature limits their ability to capture the stochasticity of real-world biological and physical systems. We propose the Mixture of Neural Cellular Automata (MNCA), a novel framework incorporating the idea of mixture models into the NCA paradigm. By combining probabilistic rule assignments with intrinsic noise, MNCAs can model diverse local behaviors and reproduce the stochastic dynamics observed in biological processes. We evaluate the effectiveness of MNCAs in three key domains: (1) synthetic simulations of tissue growth and differentiation, (2) image morphogenesis robustness, and (3) microscopy image segmentation. Results show that MNCAs achieve superior robustness to perturbations, better recapitulate real biological growth patterns, and provide interpretable rule segmentation. These findings position MNCAs as a promising tool for modeling stochastic dynamical systems and studying self-growth processes.
- Abstract(参考訳): Neural Cellular Automata (NCA)は、自己組織化プロセスをモデル化するための有望な新しいアプローチである。
しかし、その決定論的性質は、現実世界の生物学的・物理的システムの確率性を捉える能力を制限する。
NCAパラダイムに混合モデルの概念を取り入れた新しいフレームワークであるMNCA(Mixture of Neural Cellular Automata)を提案する。
確率論的規則割り当てと固有の雑音を組み合わせることで、MNCAは様々な局所的な挙動をモデル化し、生物学的プロセスで観察される確率力学を再現することができる。
1) 組織成長と分化の合成シミュレーション, (2) 画像形態形成の堅牢性, (3) 顕微鏡像のセグメンテーションの3つの主要な領域におけるMNCAの有効性を評価した。
その結果, MNCAは摂動に対して優れた堅牢性, 生長パターンのカプセル化, 解釈可能な規則セグメンテーションを実現していることがわかった。
これらの結果から, MNCAは確率力学系をモデル化し, 自己成長過程を研究する上で有望なツールであると考えられた。
関連論文リスト
- A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example [2.325005809983534]
本稿では,重要な規制機構を特定し,不確実性をモデル化するための記号的,統計的学習フレームワークを提案する。
後部探査のための随伴感度解析を用いたメトロポリス調整ランゲヴィンアルゴリズムを開発した。
実証的研究は、不足する規制機構を回復し、データ制限条件下でのモデル忠実性を改善する能力を示す。
論文 参考訳(メタデータ) (2025-05-06T04:39:34Z) - A Novel Framework for Learning Stochastic Representations for Sequence Generation and Recognition [0.0]
シーケンシャルなデータの生成と認識は、動的環境で動作する自律システムの基本である。
パラメトリックバイアスを用いた新しいリカレントネットワーク(RNNPB)を提案する。
我々のアプローチは、時間パターンをモデル化するためのフレームワークを提供し、人工知能とロボティクスにおける堅牢なシステムの開発を前進させる。
論文 参考訳(メタデータ) (2024-12-30T07:27:50Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - Learning spatio-temporal patterns with Neural Cellular Automata [0.0]
我々はNAAを訓練し、時系列画像とPDE軌道から複雑な力学を学ぶ。
我々はNCAを拡張し、同じシステム内の過渡構造と安定構造の両方を捕捉する。
任意のダイナミクスを学べることによって、NAAはデータ駆動モデリングフレームワークとして大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-23T11:16:32Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Variational Neural Cellular Automata [7.863826008567604]
自然界では、細胞の成長と分化の過程は、生物の驚くべき多様性をもたらしている。
本稿では, 細胞成長と分化の生物学的過程に着想を得て, 変異細胞オートマタ(VNCA)の生成モデルを提案する。
論文 参考訳(メタデータ) (2022-01-28T11:41:53Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Neural Cellular Automata Manifold [84.08170531451006]
ニューラルセルラーオートマタのニューラルネットワークアーキテクチャは、より大きなNNにカプセル化可能であることを示す。
これにより、NAAの多様体を符号化する新しいモデルを提案し、それぞれが異なる画像を生成することができる。
生物学的には、我々のアプローチは転写因子の役割を担い、細胞の分化を促進する特定のタンパク質への遺伝子マッピングを調節する。
論文 参考訳(メタデータ) (2020-06-22T11:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。