論文の概要: Learning spatio-temporal patterns with Neural Cellular Automata
- arxiv url: http://arxiv.org/abs/2310.14809v2
- Date: Mon, 22 Apr 2024 09:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 00:32:57.984097
- Title: Learning spatio-temporal patterns with Neural Cellular Automata
- Title(参考訳): ニューラルセルオートマタを用いた時空間パターンの学習
- Authors: Alex D. Richardson, Tibor Antal, Richard A. Blythe, Linus J. Schumacher,
- Abstract要約: 我々はNAAを訓練し、時系列画像とPDE軌道から複雑な力学を学ぶ。
我々はNCAを拡張し、同じシステム内の過渡構造と安定構造の両方を捕捉する。
任意のダイナミクスを学べることによって、NAAはデータ駆動モデリングフレームワークとして大きな可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Cellular Automata (NCA) are a powerful combination of machine learning and mechanistic modelling. We train NCA to learn complex dynamics from time series of images and PDE trajectories. Our method is designed to identify underlying local rules that govern large scale dynamic emergent behaviours. Previous work on NCA focuses on learning rules that give stationary emergent structures. We extend NCA to capture both transient and stable structures within the same system, as well as learning rules that capture the dynamics of Turing pattern formation in nonlinear Partial Differential Equations (PDEs). We demonstrate that NCA can generalise very well beyond their PDE training data, we show how to constrain NCA to respect given symmetries, and we explore the effects of associated hyperparameters on model performance and stability. Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework, especially for modelling biological pattern formation.
- Abstract(参考訳): Neural Cellular Automata (NCA)は機械学習とメカニスティックモデリングの強力な組み合わせである。
我々はNAAを訓練し、時系列画像とPDE軌道から複雑な力学を学ぶ。
本手法は,大規模動的創発行動を管理する局所ルールの同定を目的としている。
NCAに関するこれまでの研究は、定常的な創発的な構造を与える学習規則に焦点を当てていた。
非線形偏微分方程式(PDE)におけるチューリングパターン形成のダイナミクスを捉える学習規則と同様に、同一システム内の過渡的構造と安定構造の両方を捉えるためにNAAを拡張した。
我々は、NAAがPDEトレーニングデータを超えて非常に一般化できることを実証し、NAAが与えられた対称性を尊重することをいかに制限するかを示し、関連するハイパーパラメータがモデルの性能と安定性に与える影響を考察する。
任意のダイナミクスを学べることによって、NAAはデータ駆動モデリングフレームワークとして、特に生物学的パターンの形成をモデル化するための大きな可能性を秘めている。
関連論文リスト
- ControlSynth Neural ODEs: Modeling Dynamical Systems with Guaranteed Convergence [1.1720409777196028]
ニューラルネットワーク(NODE)は、時間間隔の制限なしにデータを処理できる連続時間ニューラルネットワーク(NN)である。
非常に非線形な性質にもかかわらず、収束はトラクタブル線型不等式によって保証されることを示す。
CSODEの合成において、異なるスケールで動的に同時に捕捉される可能性について学習するための余分な制御項を導入する。
論文 参考訳(メタデータ) (2024-11-04T17:20:42Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - NoiseNCA: Noisy Seed Improves Spatio-Temporal Continuity of Neural Cellular Automata [23.73063532045145]
NCAはセルオートマタの一種で、更新ルールはニューラルネットワークによってパラメータ化される。
既存のNAAモデルは、トレーニングの離散化に過度に適合する傾向があることを示す。
本研究では,一様雑音を初期条件とする解を提案する。
論文 参考訳(メタデータ) (2024-04-09T13:02:33Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
逐次データから解釈可能なPDEモデルを自動的に取得できる学習フレームワークを提案する。
我々のモデルは、貴重な解釈可能性を提供し、最先端モデルに匹敵する性能を達成することができる。
論文 参考訳(メタデータ) (2022-09-03T20:14:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。