論文の概要: A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example
- arxiv url: http://arxiv.org/abs/2505.03177v1
- Date: Tue, 06 May 2025 04:39:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.209747
- Title: A Symbolic and Statistical Learning Framework to Discover Bioprocessing Regulatory Mechanism: Cell Culture Example
- Title(参考訳): バイオプロセッシング・レギュレーションのメカニズムを明らかにするシンボリック・統計的学習フレームワーク:細胞培養例
- Authors: Keilung Choy, Wei Xie, Keqi Wang,
- Abstract要約: 本稿では,重要な規制機構を特定し,不確実性をモデル化するための記号的,統計的学習フレームワークを提案する。
後部探査のための随伴感度解析を用いたメトロポリス調整ランゲヴィンアルゴリズムを開発した。
実証的研究は、不足する規制機構を回復し、データ制限条件下でのモデル忠実性を改善する能力を示す。
- 参考スコア(独自算出の注目度): 2.325005809983534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bioprocess mechanistic modeling is essential for advancing intelligent digital twin representation of biomanufacturing, yet challenges persist due to complex intracellular regulation, stochastic system behavior, and limited experimental data. This paper introduces a symbolic and statistical learning framework to identify key regulatory mechanisms and quantify model uncertainty. Bioprocess dynamics is formulated with stochastic differential equations characterizing intrinsic process variability, with a predefined set of candidate regulatory mechanisms constructed from biological knowledge. A Bayesian learning approach is developed, which is based on a joint learning of kinetic parameters and regulatory structure through a formulation of the mixture model. To enhance computational efficiency, a Metropolis-adjusted Langevin algorithm with adjoint sensitivity analysis is developed for posterior exploration. Compared to state-of-the-art Bayesian inference approaches, the proposed framework achieves improved sample efficiency and robust model selection. An empirical study demonstrates its ability to recover missing regulatory mechanisms and improve model fidelity under data-limited conditions.
- Abstract(参考訳): バイオプロセス・メカニスティック・モデリングは、生物製造におけるインテリジェントなデジタル双対表現の推進に不可欠であるが、複雑な細胞内調節、確率的システムの振る舞い、限られた実験データにより課題が持続する。
本稿では,重要な規制機構を特定し,モデルの不確実性を定量化するための記号的,統計的学習フレームワークを提案する。
バイオプロセス力学は、内在的なプロセスの変動を特徴付ける確率微分方程式と、生物学的知識から構築された候補制御機構のセットで定式化される。
混合モデルの定式化を通じて,運動パラメータと制御構造を共同で学習するベイズ学習手法を開発した。
計算効率を向上させるため,後部探索のための随伴感度解析を用いたメトロポリス調整ランゲヴィンアルゴリズムを開発した。
最新のベイズ推定手法と比較して,提案手法はサンプル効率の向上と頑健なモデル選択を実現する。
実証的研究は、データ制限条件下で、失われた規制機構を回復し、モデル忠実性を改善する能力を示す。
関連論文リスト
- Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
バイオメディカルデータセットの理解を容易にするために,マルチモーダルデータに対するフレキシブルな識別条件と原理的手法を開発した。
主要な理論的貢献は、モジュラリティ間の因果関係の構造的空間性である。
実世界のヒト表現型データセットの結果は、確立された生物医学研究と一致している。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Adjoint Sensitivity Analysis on Multi-Scale Bioprocess Stochastic Reaction Network [2.6130735302655554]
本稿では,機械的モデルパラメータの学習を高速化するための随伴感度アプローチを提案する。
本稿では,多スケールのバイオプロセス力学モデルを表す酵素解析(SA)について考察する。
論文 参考訳(メタデータ) (2024-05-07T05:06:45Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - A Framework for Strategic Discovery of Credible Neural Network Surrogate Models under Uncertainty [0.0]
本研究では,Occam Plausibility Algorithm for surrogate model (OPAL-surrogate)を提案する。
OPAL-surrogateは、予測ニューラルネットワークベースのサロゲートモデルを明らかにするための、体系的なフレームワークを提供する。
モデルの複雑さ、正確性、予測の不確実性の間のトレードオフをバランスさせる。
論文 参考訳(メタデータ) (2024-03-13T18:45:51Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
本稿では、運動単位活性化電位波形を生成するために、逆向きに訓練された条件付き生成ニューラルネットワークを提案する。
本研究では,より少ない数の数値モデルの出力を高い精度で予測的に補間できることを実証する。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Opportunities of Hybrid Model-based Reinforcement Learning for Cell
Therapy Manufacturing Process Development and Control [6.580930850408461]
細胞治療製造の主な課題は、高い複雑さ、高い不確実性、非常に限られたプロセスデータである。
本稿では,プロセス開発と制御を効率的にガイドするフレームワーク"hybridRL"を提案する。
実験的検討では, 細胞治療の例を用いて, 提案したハイブリッド-RLフレームワークが, 古典的決定論的力学モデルによるプロセス最適化よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-10T00:01:19Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。