Efficient Inversion of Unknown Unitary Operations with Structured Hamiltonians
- URL: http://arxiv.org/abs/2506.20570v1
- Date: Wed, 25 Jun 2025 16:06:55 GMT
- Title: Efficient Inversion of Unknown Unitary Operations with Structured Hamiltonians
- Authors: Yin Mo, Tengxiang Lin, Xin Wang,
- Abstract summary: We present efficient quantum algorithms for inverting unitaries with specific Hamiltonian structures.<n>We identify cases where unitaries encoding exponentially many parameters can be inverted using only a single query.
- Score: 4.852613028421959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unknown unitary inversion is a fundamental primitive in quantum computing and physics. Although recent work has demonstrated that quantum algorithms can invert arbitrary unknown unitaries without accessing their classical descriptions, improving the efficiency of such protocols remains an open question. In this work, we present efficient quantum algorithms for inverting unitaries with specific Hamiltonian structures, achieving significant reductions in both ancilla qubit requirements and unitary query complexity. We identify cases where unitaries encoding exponentially many parameters can be inverted using only a single query. We further extend our framework to implement unitary complex conjugation and transposition operations, and develop modified protocols capable of inverting more general classes of Hamiltonians. We have also demonstrated the efficacy and robustness of our algorithms via numerical simulations under realistic noise conditions of superconducting quantum hardware. Our results establish more efficient protocols that improve the resources required for quantum unitary inversion when prior information about the quantum system is available, and provide practical methods for implementing these operations on near-term quantum devices.
Related papers
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum singular value transformation (QSVT) framework.<n>In this article, we affirm this perspective by leveraging block encoding to substantially enhance two previously proposed quantum algorithms.<n>Our findings demonstrate that even just elementary operations within the unitary block encoding framework can eliminate major scaling factors.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Quantum algorithms: A survey of applications and end-to-end complexities [88.57261102552016]
The anticipated applications of quantum computers span across science and industry.<n>We present a survey of several potential application areas of quantum algorithms.<n>We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Variational quantum regression algorithm with encoded data structure [0.0]
In this paper, we construct the first interpretable quantum regression algorithm.<n>The encoded data structure reduces the time complexity of computing the regression map.<n>We envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
arXiv Detail & Related papers (2023-07-07T00:30:16Z) - Unitary Complexity and the Uhlmann Transformation Problem [41.67228730328207]
We introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes.
We use this framework to study the complexity of transforming one entangled state into another via local operations.
Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.
arXiv Detail & Related papers (2023-06-22T17:46:39Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum State Preparation and Non-Unitary Evolution with Diagonal
Operators [0.0]
We present a dilation based algorithm to simulate non-unitary operations on unitary quantum devices.
We use this algorithm to prepare random sub-normalized two-level states on a quantum device with high fidelity.
We also present the accurate non-unitary dynamics of two-level open quantum systems in a dephasing channel and an amplitude damping channel computed on a quantum device.
arXiv Detail & Related papers (2022-05-05T17:56:41Z) - Ground state preparation and energy estimation on early fault-tolerant
quantum computers via quantum eigenvalue transformation of unitary matrices [3.1952399274829775]
We develop a tool called quantum eigenvalue transformation of unitary matrices with reals (QET-U)
This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy.
We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model.
arXiv Detail & Related papers (2022-04-12T17:11:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.