First-order methods for stochastic and finite-sum convex optimization with deterministic constraints
- URL: http://arxiv.org/abs/2506.20630v1
- Date: Wed, 25 Jun 2025 17:26:02 GMT
- Title: First-order methods for stochastic and finite-sum convex optimization with deterministic constraints
- Authors: Zhaosong Lu, Yifeng Xiao,
- Abstract summary: We study a class of and finite-sum convex optimization problems with deterministic constraints.<n>We propose first-order methods for finding an $epsilon$-$surely feasible optimal$ ($epsilon$-SFSO) solution.<n>As a byproduct, we also derive first-order oracle complexity results for sample average approximation method in computing an $epsilon$-SFSO solution.
- Score: 1.411894456054802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study a class of stochastic and finite-sum convex optimization problems with deterministic constraints. Existing methods typically aim to find an $\epsilon$-$expectedly\ feasible\ stochastic\ optimal$ solution, in which the expected constraint violation and expected optimality gap are both within a prescribed tolerance $\epsilon$. However, in many practical applications, constraints must be nearly satisfied with certainty, rendering such solutions potentially unsuitable due to the risk of substantial violations. To address this issue, we propose stochastic first-order methods for finding an $\epsilon$-$surely\ feasible\ stochastic\ optimal$ ($\epsilon$-SFSO) solution, where the constraint violation is deterministically bounded by $\epsilon$ and the expected optimality gap is at most $\epsilon$. Our methods apply an accelerated stochastic gradient (ASG) scheme or a modified variance-reduced ASG scheme $only\ once$ to a sequence of quadratic penalty subproblems with appropriately chosen penalty parameters. We establish first-order oracle complexity bounds for the proposed methods in computing an $\epsilon$-SFSO solution. As a byproduct, we also derive first-order oracle complexity results for sample average approximation method in computing an $\epsilon$-SFSO solution of the stochastic optimization problem using our proposed methods to solve the sample average problem.
Related papers
- A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization [17.25924791071807]
We present a novel type of subgradient algorithm for complex constraints.<n>We show that our method is significantly faster than two-of-the-art algorithms.
arXiv Detail & Related papers (2025-01-31T15:18:52Z) - Variance-reduced first-order methods for deterministically constrained stochastic nonconvex optimization with strong convergence guarantees [1.2562458634975162]
Existing methods typically aim to find an $epsilon$-stochastic stationary point, where the expected violations of both constraints and first-order stationarity are within a prescribed accuracy.
In many practical applications, it is crucial that the constraints be nearly satisfied with certainty, making such an $epsilon$-stochastic stationary point potentially undesirable.
arXiv Detail & Related papers (2024-09-16T00:26:42Z) - On Penalty Methods for Nonconvex Bilevel Optimization and First-Order
Stochastic Approximation [13.813242559935732]
We show first-order algorithms for solving Bilevel Optimization problems.
In particular, we show a strong connection between the penalty function and the hyper-objective.
We show an improved oracle-complexity of $O(epsilon-3)$ and $O(epsilon-5)$, respectively.
arXiv Detail & Related papers (2023-09-04T18:25:43Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
We generalize the approach Gasnikov et. al., 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle.
Our approach reduces $fracnlog n$ times the required number of oracle calls.
In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem.
arXiv Detail & Related papers (2020-05-12T16:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.