E-ABIN: an Explainable module for Anomaly detection in BIological Networks
- URL: http://arxiv.org/abs/2506.20693v1
- Date: Wed, 25 Jun 2025 08:25:17 GMT
- Title: E-ABIN: an Explainable module for Anomaly detection in BIological Networks
- Authors: Ugo Lomoio, Tommaso Mazza, Pierangelo Veltri, Pietro Hiram Guzzi,
- Abstract summary: E-ABIN is a general-purpose, explainable framework for Anomaly detection in Biological Networks.<n>It combines classical machine learning and graph-based deep learning techniques within a unified, user-friendly platform.<n>We demonstrate the utility of E-ABIN through case studies of bladder cancer and coeliac disease.
- Score: 1.7999333451993955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing availability of large-scale omics data calls for robust analytical frameworks capable of handling complex gene expression datasets while offering interpretable results. Recent advances in artificial intelligence have enabled the identification of aberrant molecular patterns distinguishing disease states from healthy controls. Coupled with improvements in model interpretability, these tools now support the identification of genes potentially driving disease phenotypes. However, current approaches to gene anomaly detection often remain limited to single datasets and lack accessible graphical interfaces. Here, we introduce E-ABIN, a general-purpose, explainable framework for Anomaly detection in Biological Networks. E-ABIN combines classical machine learning and graph-based deep learning techniques within a unified, user-friendly platform, enabling the detection and interpretation of anomalies from gene expression or methylation-derived networks. By integrating algorithms such as Support Vector Machines, Random Forests, Graph Autoencoders (GAEs), and Graph Adversarial Attributed Networks (GAANs), E-ABIN ensures a high predictive accuracy while maintaining interpretability. We demonstrate the utility of E-ABIN through case studies of bladder cancer and coeliac disease, where it effectively uncovers biologically relevant anomalies and offers insights into disease mechanisms.
Related papers
- Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis [6.351889311288302]
We propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN)<n>I2B-HGNN applies information bottleneck principles to guide both brain connectivity modeling and cross-modal feature integration.<n>We show that I2B-HGNN achieves superior performance in diagnosing NDDs, exhibiting both high classification accuracy and the ability to provide interpretable biomarker identification.
arXiv Detail & Related papers (2025-02-28T06:41:55Z) - Comprehensive Metapath-based Heterogeneous Graph Transformer for Gene-Disease Association Prediction [19.803593399456823]
COmprehensive MEtapath-based heterogeneous graph Transformer(COMET) for predicting gene-disease associations.<n>Our method demonstrates superior robustness compared to state-of-the-art approaches.
arXiv Detail & Related papers (2025-01-14T09:41:18Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data [9.601125513491835]
We propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions.
AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity.
arXiv Detail & Related papers (2023-04-12T14:13:09Z) - Knowledge Graph Completion based on Tensor Decomposition for Disease
Gene Prediction [2.838553480267889]
We construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction.
KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge.
arXiv Detail & Related papers (2023-02-18T13:57:44Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.