Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data
- URL: http://arxiv.org/abs/2304.05874v3
- Date: Wed, 27 Sep 2023 13:58:50 GMT
- Title: Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of
Alzheimer's Disease using EEG Data
- Authors: Dominik Klepl, Fei He, Min Wu, Daniel J. Blackburn, Ptolemaios G.
Sarrigiannis
- Abstract summary: We propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions.
AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity.
- Score: 9.601125513491835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural network (GNN) models are increasingly being used for the
classification of electroencephalography (EEG) data. However, GNN-based
diagnosis of neurological disorders, such as Alzheimer's disease (AD), remains
a relatively unexplored area of research. Previous studies have relied on
functional connectivity methods to infer brain graph structures and used simple
GNN architectures for the diagnosis of AD. In this work, we propose a novel
adaptive gated graph convolutional network (AGGCN) that can provide explainable
predictions. AGGCN adaptively learns graph structures by combining
convolution-based node feature enhancement with a correlation-based measure of
power spectral density similarity. Furthermore, the gated graph convolution can
dynamically weigh the contribution of various spatial scales. The proposed
model achieves high accuracy in both eyes-closed and eyes-open conditions,
indicating the stability of learned representations. Finally, we demonstrate
that the proposed AGGCN model generates consistent explanations of its
predictions that might be relevant for further study of AD-related alterations
of brain networks.
Related papers
- Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Spatial Temporal Graph Convolution with Graph Structure Self-learning
for Early MCI Detection [9.11430195887347]
We propose a spatial temporal graph convolutional network with a novel graph structure self-learning mechanism for EMCI detection.
Results on the Alzheimer's Disease Neuroimaging Initiative database show that our method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-11T12:29:00Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
We present an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging.
We find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data.
We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
arXiv Detail & Related papers (2022-10-29T19:03:01Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs)
We propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs.
A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation.
arXiv Detail & Related papers (2022-10-24T08:01:58Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Collaborative learning of images and geometrics for predicting
isocitrate dehydrogenase status of glioma [8.262398325144774]
Gold standard of IDH mutation detection requires tumour tissue obtained via invasive approaches and is usually expensive.
Recent advancement in radiogenomics provides a non-invasive approach for predicting IDH mutation based on MRI.
Here we propose a collaborative learning framework that learns both tumor images and tumor geometrics using convolutional neural networks (CNN) and graph neural networks (GNN)
Our results show that the proposed model outperforms the baseline model of 3D-DenseNet121.
arXiv Detail & Related papers (2022-01-14T15:58:07Z) - Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction [7.6146285961466]
We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
arXiv Detail & Related papers (2020-09-06T15:53:17Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Understanding Graph Isomorphism Network for rs-fMRI Functional
Connectivity Analysis [49.05541693243502]
We develop a framework for analyzing fMRI data using the Graph Isomorphism Network (GIN)
One of the important contributions of this paper is the observation that the GIN is a dual representation of convolutional neural network (CNN) in the graph space.
We exploit CNN-based saliency map techniques for the GNN, which we tailor to the proposed GIN with one-hot encoding.
arXiv Detail & Related papers (2020-01-10T23:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.