Spin-Photon Correlations from a Purcell-enhanced Diamond Nitrogen-Vacancy Center Coupled to an Open Microcavity
- URL: http://arxiv.org/abs/2506.20722v1
- Date: Wed, 25 Jun 2025 18:00:02 GMT
- Title: Spin-Photon Correlations from a Purcell-enhanced Diamond Nitrogen-Vacancy Center Coupled to an Open Microcavity
- Authors: Julius Fischer, Yanik Herrmann, Cornelis F. J. Wolfs, Stijn Scheijen, Maximilian Ruf, Ronald Hanson,
- Abstract summary: An efficient interface between a spin qubit and single photons is a key enabling system for quantum science and technology.<n>We report on a coherently controlled diamond nitrogen-vacancy center electron spin qubit interfaced with an open microcavity.<n>We generate two-qubit and three-qubit spin-photon states and measure heralded Z-basis correlations between the photonic time-bin qubits and the spin qubit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An efficient interface between a spin qubit and single photons is a key enabling system for quantum science and technology. We report on a coherently controlled diamond nitrogen-vacancy center electron spin qubit that is optically interfaced with an open microcavity. Through Purcell enhancement and an asymmetric cavity design, we achieve efficient collection of resonant photons, while on-chip microwave lines allow for spin qubit control at a 10 MHz Rabi frequency. With the microcavity tuned to resonance with the nitrogen-vacancy center's optical transition, we use excited state lifetime measurements to determine a Purcell factor of 7.3 $\pm$ 1.6. Upon pulsed resonant excitation, we find a coherent photon detection probability of 0.5 % per pulse. Although this result is limited by the finite excitation probability, it already presents an order of magnitude improvement over the solid immersion lens devices used in previous quantum network demonstrations. Furthermore, we use resonant optical pulses to initialize and read out the electron spin. By combining the efficient interface with spin qubit control, we generate two-qubit and three-qubit spin-photon states and measure heralded Z-basis correlations between the photonic time-bin qubits and the spin qubit.
Related papers
- A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth [43.06643088952006]
electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
arXiv Detail & Related papers (2023-12-14T14:17:35Z) - Spin-photon entanglement with direct photon emission in the telecom
C-band [0.0]
Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications.
We report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.
arXiv Detail & Related papers (2023-10-25T18:53:42Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum control of the tin-vacancy spin qubit in diamond [41.74498230885008]
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices.
The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing.
We demonstrate multi-axis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive.
arXiv Detail & Related papers (2021-06-01T18:36:12Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Hybrid microwave-optical scanning probe for addressing solid-state spins
in nanophotonic cavities [0.0]
In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit.
The optical portion 46% achieves one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss.
The entire probe can be scanned across a large number of devices inside a $3$He cryostat without free-space optical access.
arXiv Detail & Related papers (2020-12-11T01:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.