Spiking Neural Networks for SAR Interferometric Phase Unwrapping: A Theoretical Framework for Energy-Efficient Processing
- URL: http://arxiv.org/abs/2506.20782v1
- Date: Wed, 25 Jun 2025 19:12:16 GMT
- Title: Spiking Neural Networks for SAR Interferometric Phase Unwrapping: A Theoretical Framework for Energy-Efficient Processing
- Authors: Marc Bara,
- Abstract summary: We present the first theoretical framework for applying spiking neural networks (SNNs) to synthetic aperture radar (SAR) interferometric phase unwrapping.<n>Our framework demonstrates how the temporal dynamics inherent in SNNs can naturally model the spatial continuity constraints fundamental to phase unwrapping.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first theoretical framework for applying spiking neural networks (SNNs) to synthetic aperture radar (SAR) interferometric phase unwrapping. Despite extensive research in both domains, our comprehensive literature review confirms that SNNs have never been applied to phase unwrapping, representing a significant gap in current methodologies. As Earth observation data volumes continue to grow exponentially (with missions like NISAR expected to generate 100PB in two years) energy-efficient processing becomes critical for sustainable data center operations. SNNs, with their event-driven computation model, offer potential energy savings of 30-100x compared to conventional approaches while maintaining comparable accuracy. We develop spike encoding schemes specifically designed for wrapped phase data, propose SNN architectures that leverage the spatial propagation nature of phase unwrapping, and provide theoretical analysis of computational complexity and convergence properties. Our framework demonstrates how the temporal dynamics inherent in SNNs can naturally model the spatial continuity constraints fundamental to phase unwrapping. This work opens a new research direction at the intersection of neuromorphic computing and SAR interferometry, offering a complementary approach to existing algorithms that could enable more sustainable large-scale InSAR processing.
Related papers
- Energy efficiency analysis of Spiking Neural Networks for space applications [43.91307921405309]
Spiking Neural Networks (SNN) are highly attractive due to their theoretically superior energy efficiency.<n>This work presents a numerical analysis and comparison of different SNN techniques applied to scene classification for the EuroSAT dataset.
arXiv Detail & Related papers (2025-05-16T16:29:50Z) - PAC-Bayesian risk bounds for fully connected deep neural network with Gaussian priors [0.0]
We show that fully connected Bayesian neural networks can achieve comparable convergence rates to sparse networks.<n>Our results hold for a broad class of practical activation functions that are Lipschitz continuous.
arXiv Detail & Related papers (2025-05-07T11:42:18Z) - Dense ReLU Neural Networks for Temporal-spatial Model [13.8173644075917]
We focus on fully connected deep neural networks utilizing the Rectified Linear Unit (ReLU) activation function for nonparametric estimation.<n>We derive non-asymptotic bounds that lead to convergence rates, addressing both temporal and spatial dependence in the observed measurements.<n>We also tackle the curse of dimensionality by modeling the data on a manifold, exploring the intrinsic dimensionality of high-dimensional data.
arXiv Detail & Related papers (2024-11-15T05:30:36Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
Spiking Neural Networks (SNNs) are known for their bio-plausibility and energy efficiency.
In this work, we explore the merger of novel computing and information encoding schemes in SNN architectures.
We investigate the tradeoffs of our proposal in terms of accuracy, inference latency, spiking sparsity, energy consumption, and datasets.
arXiv Detail & Related papers (2024-04-26T22:52:23Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Ensemble Reservoir Computing for Dynamical Systems: Prediction of
Phase-Space Stable Region for Hadron Storage Rings [0.0]
Echo State Networks (ESN) are a class of recurrent neural networks that are computationally effective.
We present the performance reached by ESN based on the prediction of the phase-space stability region.
We observe that the proposed ESN approach is capable of effectively predicting the time evolution of the extent of the dynamic aperture.
arXiv Detail & Related papers (2023-01-17T10:29:07Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
We take a step towards closing the gap between theory and practice by significantly improving the known theoretical bounds on both the network width and the convergence time.
We show that convergence to a global minimum is guaranteed for networks with quadratic widths in the sample size and linear in their depth at a time logarithmic in both.
Our analysis and convergence bounds are derived via the construction of a surrogate network with fixed activation patterns that can be transformed at any time to an equivalent ReLU network of a reasonable size.
arXiv Detail & Related papers (2021-01-12T00:40:45Z) - Inter-layer Information Similarity Assessment of Deep Neural Networks
Via Topological Similarity and Persistence Analysis of Data Neighbour
Dynamics [93.4221402881609]
The quantitative analysis of information structure through a deep neural network (DNN) can unveil new insights into the theoretical performance of DNN architectures.
Inspired by both LS and ID strategies for quantitative information structure analysis, we introduce two novel complimentary methods for inter-layer information similarity assessment.
We demonstrate their efficacy in this study by performing analysis on a deep convolutional neural network architecture on image data.
arXiv Detail & Related papers (2020-12-07T15:34:58Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.