論文の概要: Dynamic Context-Aware Prompt Recommendation for Domain-Specific AI Applications
- arxiv url: http://arxiv.org/abs/2506.20815v1
- Date: Wed, 25 Jun 2025 20:29:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:09.87823
- Title: Dynamic Context-Aware Prompt Recommendation for Domain-Specific AI Applications
- Title(参考訳): ドメイン特化AIアプリケーションのための動的コンテキスト認識型プロンプト勧告
- Authors: Xinye Tang, Haijun Zhai, Chaitanya Belwal, Vineeth Thayanithi, Philip Baumann, Yogesh K Roy,
- Abstract要約: 本稿では,ドメイン固有AIアプリケーションのための動的コンテキスト対応プロンプトレコメンデーションシステムを提案する。
我々のソリューションは、コンテキストクエリ分析、検索強化知識基盤、階層的スキル組織、適応的スキルランキングを組み合わせることで、関連性があり実行可能なプロンプト提案を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: LLM-powered applications are highly susceptible to the quality of user prompts, and crafting high-quality prompts can often be challenging especially for domain-specific applications. This paper presents a novel dynamic context-aware prompt recommendation system for domain-specific AI applications. Our solution combines contextual query analysis, retrieval-augmented knowledge grounding, hierarchical skill organization, and adaptive skill ranking to generate relevant and actionable prompt suggestions. The system leverages behavioral telemetry and a two-stage hierarchical reasoning process to dynamically select and rank relevant skills, and synthesizes prompts using both predefined and adaptive templates enhanced with few-shot learning. Experiments on real-world datasets demonstrate that our approach achieves high usefulness and relevance, as validated by both automated and expert evaluations.
- Abstract(参考訳): LLMベースのアプリケーションは、ユーザープロンプトの品質に非常に敏感であり、特にドメイン固有のアプリケーションでは、高品質なプロンプトを作成することがしばしば困難である。
本稿では,ドメイン固有AIアプリケーションのための動的コンテキスト対応プロンプトレコメンデーションシステムを提案する。
我々のソリューションは、コンテキストクエリ分析、検索強化知識基盤、階層的スキル組織、適応的スキルランキングを組み合わせることで、関連性があり実行可能なプロンプト提案を生成する。
このシステムは、行動テレメトリと2段階の階層的推論プロセスを利用して、関連するスキルを動的に選択およびランク付けし、数ショットの学習で強化された事前定義されたテンプレートと適応されたテンプレートの両方を使用してプロンプトを合成する。
実世界のデータセットに関する実験は、我々のアプローチが、自動化された評価と専門家による評価の両方によって検証され、高い有用性と妥当性を達成できることを実証している。
関連論文リスト
- Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective [65.12150411762273]
ランダムなデモを不整合な "gibberish" にプルーニングすることで,多様なタスクにおけるパフォーマンスが著しく向上することを示す。
本稿では,低データレジームのみを用いてプルーニング戦略を自動的に検索する自己発見プロンプト最適化フレームワークPromptQuineを提案する。
論文 参考訳(メタデータ) (2025-06-22T07:53:07Z) - Tournament of Prompts: Evolving LLM Instructions Through Structured Debates and Elo Ratings [0.9437165725355702]
我々は,エロの選考による議論駆動評価を通じて,進化を促す新しいフレームワークであるDEEVOを紹介する。
Eloの格付けをフィットネスプロキシとして利用することで、DEEVOは同時に改善を推進し、迅速な人口の貴重な多様性を保ちます。
論文 参考訳(メタデータ) (2025-05-30T19:33:41Z) - Multi-Level Aware Preference Learning: Enhancing RLHF for Complex Multi-Instruction Tasks [81.44256822500257]
RLHFは、人工知能システムと人間の好みを結びつける主要なアプローチとして登場した。
RLHFは、複雑なマルチインストラクションタスクに直面すると、不十分なコンプライアンス機能を示す。
本稿では,マルチインストラクション能力を向上させる新しいMAPL(Multi-level Aware Preference Learning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-19T08:33:11Z) - MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization [30.748085697067154]
ソクラティックガイダンス(MARS)を取り入れたマルチエージェントフレームワークを提案する。
MARSは7つのエージェントから構成され、それぞれ異なる機能を持ち、Plannerを自律的に使用して最適化パスを設計する。
提案手法の有効性を検証するため,様々なデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2025-03-21T06:19:55Z) - A Sequential Optimal Learning Approach to Automated Prompt Engineering in Large Language Models [14.483240353801074]
本稿では,自動プロンプトエンジニアリングのための最適学習フレームワークを提案する。
限られた評価予算を効率的に割り当てつつ、効果的なプロンプト機能を逐次識別するように設計されている。
私たちのフレームワークは、より広い範囲のアプリケーションに自動プロンプトエンジニアリングをデプロイするためのソリューションを提供します。
論文 参考訳(メタデータ) (2025-01-07T03:51:10Z) - Enhancing LLM-Based Text Classification in Political Science: Automatic Prompt Optimization and Dynamic Exemplar Selection for Few-Shot Learning [1.6967824074619953]
大型言語モデル (LLMs) は、政治学におけるテキスト分類をかなり約束する。
本フレームワークは,自動プロンプト最適化,動的指数選択,コンセンサス機構を通じてLLM性能を向上させる。
オープンソースのPythonパッケージ(PoliPrompt)がGitHubで公開されている。
論文 参考訳(メタデータ) (2024-09-02T21:05:31Z) - AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents [74.17623527375241]
オフライン体験からコンテキスト認識ガイドラインを自動的に生成する,AutoGuideという新しいフレームワークを導入する。
その結果,本ガイドラインはエージェントの現在の意思決定プロセスに関連性のある知識の提供を促進する。
評価の結果, AutoGuide は複雑なベンチマーク領域において, 競争ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-03-13T22:06:03Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
ToTER (Topical Taxonomy Enhanced Retrieval) フレームワークを紹介する。
ToTERは、クエリとドキュメントの中心的なトピックを分類学のガイダンスで識別し、そのトピックの関連性を利用して、欠落したコンテキストを補う。
プラグイン・アンド・プレイのフレームワークとして、ToTERは様々なPLMベースのレトリバーを強化するために柔軟に使用できる。
論文 参考訳(メタデータ) (2024-03-07T02:34:54Z) - Intent-based Prompt Calibration: Enhancing prompt optimization with
synthetic boundary cases [2.6159111710501506]
本稿では,ユーザ意図に対するプロンプトを反復的に洗練するキャリブレーションプロセスを用いて,自動プロンプトエンジニアリングの新しい手法を提案する。
我々は,モデレーションや生成といった現実的なタスクにおいて,強力なプロプライエタリなモデルに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-02-05T15:28:43Z) - PromptAgent: Strategic Planning with Language Models Enables
Expert-level Prompt Optimization [60.00631098364391]
PromptAgentは、エキスパートレベルのプロンプトを、専門家による手工芸品と同等の品質で作成する最適化手法である。
PromptAgentは人間のような試行錯誤の探索にインスパイアされ、専門家レベルの正確な洞察と詳細な指示を誘導する。
PromptAgentを3つの実践領域にまたがる12のタスクに適用する。
論文 参考訳(メタデータ) (2023-10-25T07:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。