Efficacy of Temporal Fusion Transformers for Runoff Simulation
- URL: http://arxiv.org/abs/2506.20831v1
- Date: Wed, 25 Jun 2025 20:58:28 GMT
- Title: Efficacy of Temporal Fusion Transformers for Runoff Simulation
- Authors: Sinan Rasiya Koya, Tirthankar Roy,
- Abstract summary: We explore the strength of Temporal Fusion Transformers (TFTs) over Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling.<n>TFT slightly outperforms LSTM, especially in simulating the midsection and peak of hydrographs.<n>Being an explainable AI technique, TFT identifies the key dynamic and static variables, providing valuable scientific insights.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining attention with recurrence has shown to be valuable in sequence modeling, including hydrological predictions. Here, we explore the strength of Temporal Fusion Transformers (TFTs) over Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling. We train ten randomly initialized models, TFT and LSTM, for 531 CAMELS catchments in the US. We repeat the experiment with five subsets of the Caravan dataset, each representing catchments in the US, Australia, Brazil, Great Britain, and Chile. Then, the performance of the models, their variability regarding the catchment attributes, and the difference according to the datasets are assessed. Our findings show that TFT slightly outperforms LSTM, especially in simulating the midsection and peak of hydrographs. Furthermore, we show the ability of TFT to handle longer sequences and why it can be a better candidate for higher or larger catchments. Being an explainable AI technique, TFT identifies the key dynamic and static variables, providing valuable scientific insights. However, both TFT and LSTM exhibit a considerable drop in performance with the Caravan dataset, indicating possible data quality issues. Overall, the study highlights the potential of TFT in improving hydrological modeling and understanding.
Related papers
- Massive Supervised Fine-tuning Experiments Reveal How Data, Layer, and Training Factors Shape LLM Alignment Quality [10.74213785908381]
Supervised fine-tuning (SFT) is a critical step in aligning large language models with human instructions and values.<n>We trained a wide range of base models on a variety of datasets including code generation, mathematical reasoning, and general-domain tasks.<n>We will release these 1,000+ SFT models and benchmark results to accelerate further research.
arXiv Detail & Related papers (2025-06-17T16:13:15Z) - tsGT: Stochastic Time Series Modeling With Transformer [0.12905935507312413]
We introduce tsGT, a time series model built on a general-purpose transformer architecture.
We show that tsGT outperforms the state-of-the-art models on MAD and RMSE, and surpasses its peers on QL and CRPS, on four commonly used datasets.
arXiv Detail & Related papers (2024-03-08T22:59:41Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Probing the limit of hydrologic predictability with the Transformer
network [7.326504492614808]
We show that a vanilla Transformer architecture is not competitive against LSTM on the widely benchmarked CAMELS dataset.
A recurrence-free variant of Transformer can obtain mixed comparisons with LSTM, producing the same Kling-Gupta efficiency coefficient (KGE) along with other metrics.
While the Transformer results are not higher than current state-of-the-art, we still learned some valuable lessons.
arXiv Detail & Related papers (2023-06-21T17:06:54Z) - Temporal Fusion Transformers for Streamflow Prediction: Value of
Combining Attention with Recurrence [0.0]
This work tests the hypothesis that combining recurrence with attention can improve streamflow prediction.
We set up the Temporal Fusion Transformer (TFT) architecture, a model that combines both of these aspects and has never been applied in hydrology before.
Our results demonstrate that TFT indeed exceeds the performance benchmark set by the LSTM and Transformers for streamflow prediction.
arXiv Detail & Related papers (2023-05-21T03:58:16Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Improving Vision Transformers by Revisiting High-frequency Components [106.7140968644414]
We show that Vision Transformer (ViT) models are less effective in capturing the high-frequency components of images than CNN models.
To compensate, we propose HAT, which directly augments high-frequency components of images via adversarial training.
We show that HAT can consistently boost the performance of various ViT models.
arXiv Detail & Related papers (2022-04-03T05:16:51Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
We aim to assess the capability of neural networks to reproduce the temporal evolution of a minimal turbulent channel flow.
Long-short-term-memory (LSTM) networks and a Koopman-based framework (KNF) are trained to predict the temporal dynamics of the minimal-channel-flow modes.
arXiv Detail & Related papers (2022-03-02T09:31:03Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.