論文の概要: Zero-Shot Learning for Obsolescence Risk Forecasting
- arxiv url: http://arxiv.org/abs/2506.21240v1
- Date: Thu, 26 Jun 2025 13:23:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 19:53:10.097118
- Title: Zero-Shot Learning for Obsolescence Risk Forecasting
- Title(参考訳): 偏光リスク予測のためのゼロショット学習
- Authors: Elie Saad, Aya Mrabah, Mariem Besbes, Marc Zolghadri, Victor Czmil, Claude Baron, Vincent Bourgeois,
- Abstract要約: 偏光リスク予測は必須ですが 信頼性の欠如によって妨げられています
本稿では,ゼロショット学習 (ZSL) と大規模言語モデル (LLM) を用いた新手法を提案する。
- 参考スコア(独自算出の注目度): 0.08376229126363229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Component obsolescence poses significant challenges in industries reliant on electronic components, causing increased costs and disruptions in the security and availability of systems. Accurate obsolescence risk prediction is essential but hindered by a lack of reliable data. This paper proposes a novel approach to forecasting obsolescence risk using zero-shot learning (ZSL) with large language models (LLMs) to address data limitations by leveraging domain-specific knowledge from tabular datasets. Applied to two real-world datasets, the method demonstrates effective risk prediction. A comparative evaluation of four LLMs underscores the importance of selecting the right model for specific forecasting tasks.
- Abstract(参考訳): コンポーネントの陳腐化は、電子部品に依存している産業において重大な課題を引き起こし、システムのセキュリティと可用性においてコストと破壊を引き起こす。
正確な偏光リスク予測は不可欠だが、信頼性の欠如によって妨げられる。
本稿では,大規模言語モデル(LLM)を用いたゼロショット学習(ZSL)を用いて,表付きデータセットからのドメイン固有知識を活用することにより,データ制限に対処する新たな手法を提案する。
2つの実世界のデータセットに適用すると、この手法は効果的なリスク予測を示す。
4つのLCMの比較評価は、特定の予測タスクに対して適切なモデルを選択することの重要性を浮き彫りにしている。
関連論文リスト
- Underestimated Privacy Risks for Minority Populations in Large Language Model Unlearning [20.018234150653885]
大規模言語モデル(LLM)は、センシティブで人間の生成したデータを埋め込んで、未学習の方法の必要性を喚起する。
既存のフレームワークの盲点を強調するために,補完的な少数派対応評価フレームワークを導入する。
論文 参考訳(メタデータ) (2024-12-11T17:22:07Z) - Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models [79.65071553905021]
所望のデータセットの特徴を考慮したデータ生成手法であるデータアドバイザを提案する。
Data Advisorは生成されたデータの状態を監視し、現在のデータセットの弱点を特定し、データ生成の次のイテレーションをアドバイスする。
論文 参考訳(メタデータ) (2024-10-07T17:59:58Z) - Enhancing Data Quality through Self-learning on Imbalanced Financial Risk Data [11.910955398918444]
本研究では、既存の金融リスクデータセットを強化するためのデータ前処理手法について検討する。
本稿では,(1)マイノリティクラスに特化された合成サンプルを生成すること,(2)バイナリフィードバックを用いてサンプルを精製すること,(3)擬似ラベルを用いた自己学習を行うこと,の3つを紹介する。
我々の実験は、より堅牢な金融リスク予測システムを開発する上で重要な要素であるマイノリティ・クラス・キャリブレーションの改善に焦点を当てたTriEnhanceの有効性を明らかにした。
論文 参考訳(メタデータ) (2024-09-15T16:59:15Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
本稿では,ソースコードの脆弱性検出における大規模言語モデルの機能について,徹底的に解析する。
我々は6つの汎用LCMに対して脆弱性検出を特別に訓練した6つのオープンソースモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-08-29T10:00:57Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
大きな言語モデルは、人工知能の初期の兆候を示すが、幻覚に苦しむ。
1つの有望な解決策は、外部知識を埋め込みとして保存し、LLMを検索強化世代に支援することである。
近年の研究では、事前学習された言語モデルによるテキスト埋め込みから、元のテキストを部分的に再構築できることが実験的に示されている。
論文 参考訳(メタデータ) (2024-04-25T13:10:48Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
本稿では,すでに訓練済みのブラックボックス分類モデルの失敗リスクと予測的不確かさを推定するための,ポストホックメタラーナーであるリスクアドバイザを紹介する。
リスクアドバイザは、リスクスコアの提供に加えて、不確実性見積を、アレタリックおよびエピステマティックな不確実性コンポーネントに分解する。
ブラックボックス分類モデルおよび実世界および合成データセットのさまざまなファミリーの実験は、リスクアドバイザーがデプロイメント時の障害リスクを確実に予測していることを示している。
論文 参考訳(メタデータ) (2021-09-09T17:23:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。