Integrating Vehicle Acoustic Data for Enhanced Urban Traffic Management: A Study on Speed Classification in Suzhou
- URL: http://arxiv.org/abs/2506.21269v1
- Date: Thu, 26 Jun 2025 13:53:22 GMT
- Title: Integrating Vehicle Acoustic Data for Enhanced Urban Traffic Management: A Study on Speed Classification in Suzhou
- Authors: Pengfei Fan, Yuli Zhang, Xinheng Wang, Ruiyuan Jiang, Hankang Gu, Dongyao Jia, Shangbo Wang,
- Abstract summary: We propose a deep convolutional neural network (BMCNN) to model the coupling between vehicular noise and driving speed.<n>The BMCNN achieves a classification accuracy of 87.56% on the SZUR-Acoustic dataset and 96.28% on the public IDMT-Traffic dataset.<n>The proposed acoustics-based speed classification method can be integrated into smart-city traffic management systems for real-time noise monitoring and speed estimation.
- Score: 6.224884420568902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents and publicly releases the Suzhou Urban Road Acoustic Dataset (SZUR-Acoustic Dataset), which is accompanied by comprehensive data-acquisition protocols and annotation guidelines to ensure transparency and reproducibility of the experimental workflow. To model the coupling between vehicular noise and driving speed, we propose a bimodal-feature-fusion deep convolutional neural network (BMCNN). During preprocessing, an adaptive denoising and normalization strategy is applied to suppress environmental background interference; in the network architecture, parallel branches extract Mel-frequency cepstral coefficients (MFCCs) and wavelet-packet energy features, which are subsequently fused via a cross-modal attention mechanism in the intermediate feature space to fully exploit time-frequency information. Experimental results demonstrate that BMCNN achieves a classification accuracy of 87.56% on the SZUR-Acoustic Dataset and 96.28% on the public IDMT-Traffic dataset. Ablation studies and robustness tests on the Suzhou dataset further validate the contributions of each module to performance improvement and overfitting mitigation. The proposed acoustics-based speed classification method can be integrated into smart-city traffic management systems for real-time noise monitoring and speed estimation, thereby optimizing traffic flow control, reducing roadside noise pollution, and supporting sustainable urban planning.
Related papers
- WaveletInception Networks for Drive-by Vibration-Based Infrastructure Health Monitoring [12.238448638194203]
This paper presents a novel deep learning-based framework for infrastructure health monitoring using drive-by vibration response signals.<n>Recognizing the importance of spectral and temporal information, we introduce the WaveletInception-BiLSTM network.<n>A case study focusing on railway track stiffness estimation shows that the model significantly outperforms state-of-the-art methods in estimating railway ballast and railpad stiffness parameters.
arXiv Detail & Related papers (2025-07-17T10:14:20Z) - Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
This paper investigates a wireless split computing architecture that employs resonate-and-fire (RF) neurons to process time-domain signals directly.<n>By resonating at tunable frequencies, RF neurons extract time-localized spectral features while maintaining low spiking activity.<n> Experimental results show that the proposed RF-SNN architecture achieves comparable accuracy to conventional LIF-SNNs and ANNs.
arXiv Detail & Related papers (2025-06-24T21:14:59Z) - Adaptive Control Attention Network for Underwater Acoustic Localization and Domain Adaptation [8.017203108408973]
Localizing acoustic sound sources in the ocean is a challenging task due to the complex and dynamic nature of the environment.<n>We propose a multi-branch network architecture designed to accurately predict the distance between a moving acoustic source and a receiver.<n>Our proposed method outperforms state-of-the-art (SOTA) approaches in similar settings.
arXiv Detail & Related papers (2025-06-20T18:13:30Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.<n>A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - Towards Robust Transcription: Exploring Noise Injection Strategies for Training Data Augmentation [55.752737615873464]
This study investigates the impact of white noise at various Signal-to-Noise Ratio (SNR) levels on state-of-the-art APT models.
We hope this research provides valuable insights as preliminary work toward developing transcription models that maintain consistent performance across a range of acoustic conditions.
arXiv Detail & Related papers (2024-10-18T02:31:36Z) - LoRaWAN Based Dynamic Noise Mapping with Machine Learning for Urban Noise Enforcement [8.010966370223985]
Static noise maps depicting long-term noise levels over wide areas are valuable urban planning assets for municipalities.
Non-traffic noise sources with transient behavior, which people complain frequently, are usually ignored by static maps.
We propose here a dynamic noise mapping approach using the data collected via low-power wide-area network (LPWAN) based internet of things (IoT) infrastructure.
arXiv Detail & Related papers (2024-07-30T21:40:12Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.<n>We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Explainable Artificial Intelligence driven mask design for
self-supervised seismic denoising [0.0]
Self-supervised coherent noise suppression methods require extensive knowledge of the noise statistics.
We propose the use of explainable artificial intelligence approaches to see inside the black box that is the denoising network.
We show that a simple averaging of the Jacobian contributions over a number of randomly selected input pixels, provides an indication of the most effective mask.
arXiv Detail & Related papers (2023-07-13T11:02:55Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - IDMT-Traffic: An Open Benchmark Dataset for Acoustic Traffic Monitoring
Research [0.4433315630787158]
We present a novel open benchmark dataset, containing 2.5 hours of stereo audio recordings of 4718 vehicle passing events.
This dataset is well suited to evaluate the use-case of deploying audio classification algorithms to embedded sensor devices.
arXiv Detail & Related papers (2021-04-28T07:58:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.