Detecting Referring Expressions in Visually Grounded Dialogue with Autoregressive Language Models
- URL: http://arxiv.org/abs/2506.21294v1
- Date: Thu, 26 Jun 2025 14:14:20 GMT
- Title: Detecting Referring Expressions in Visually Grounded Dialogue with Autoregressive Language Models
- Authors: Bram Willemsen, Gabriel Skantze,
- Abstract summary: The aim is to investigate the extent to which the linguistic context alone can inform the detection of mentions.<n>We adapt a pretrained large language model (LLM) to perform a relatively course-grained annotation of mention spans in unfolding conversations.<n>Our findings indicate that even when using a moderately sized LLM, relatively small datasets, and parameter-efficient fine-tuning, a text-only approach can be effective.
- Score: 3.8673630752805446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore the use of a text-only, autoregressive language modeling approach for the extraction of referring expressions from visually grounded dialogue. More specifically, the aim is to investigate the extent to which the linguistic context alone can inform the detection of mentions that have a (visually perceivable) referent in the visual context of the conversation. To this end, we adapt a pretrained large language model (LLM) to perform a relatively course-grained annotation of mention spans in unfolding conversations by demarcating mention span boundaries in text via next-token prediction. Our findings indicate that even when using a moderately sized LLM, relatively small datasets, and parameter-efficient fine-tuning, a text-only approach can be effective, highlighting the relative importance of the linguistic context for this task. Nevertheless, we argue that the task represents an inherently multimodal problem and discuss limitations fundamental to unimodal approaches.
Related papers
- Graphically Speaking: Unmasking Abuse in Social Media with Conversation Insights [10.188075925271471]
Abusive language in social media conversations depends on the conversational context, characterized by the content and topology of preceding comments.<n>Traditional Abusive Language Detection models often overlook this context, which can lead to unreliable performance metrics.<n>Recent Natural Language Processing (NLP) methods that integrate conversational context often depend on limited and simplified representations, and report inconsistent results.<n>We propose a novel approach that utilize graph neural networks (GNNs) to model social media conversations as graphs, where nodes represent comments, and edges capture reply structures.
arXiv Detail & Related papers (2025-04-02T17:03:37Z) - Contextual Speech Extraction: Leveraging Textual History as an Implicit Cue for Target Speech Extraction [50.630431647192054]
This paper investigates a novel approach for Target Speech Extraction (TSE)<n>It relies solely on textual context to extract the target speech.<n>We present three CSE models and analyze their performances on three datasets.
arXiv Detail & Related papers (2025-03-11T18:26:10Z) - Emphasis Rendering for Conversational Text-to-Speech with Multi-modal Multi-scale Context Modeling [40.32021786228235]
Conversational Text-to-Speech (CTTS) aims to accurately express an utterance with the appropriate style within a conversational setting.
We propose a novel Emphasis Rendering scheme for the CTTS model, termed ER-CTTS.
To address data scarcity, we create emphasis intensity annotations on the existing conversational dataset (DailyTalk)
arXiv Detail & Related papers (2024-10-12T13:02:31Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
We introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model.
Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations.
arXiv Detail & Related papers (2022-09-01T07:51:46Z) - GRASP: Guiding model with RelAtional Semantics using Prompt [3.1275060062551208]
We propose a Guiding model with RelAtional Semantics using Prompt (GRASP)
We adopt a prompt-based fine-tuning approach and capture relational semantic clues of a given dialogue with an argument-aware prompt marker strategy.
In the experiments, GRASP state-of-the-art performance in terms of both F1 and F1c scores on a DialogRE dataset.
arXiv Detail & Related papers (2022-08-26T08:19:28Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.