A Systematic Review of Human-AI Co-Creativity
- URL: http://arxiv.org/abs/2506.21333v2
- Date: Fri, 27 Jun 2025 09:31:02 GMT
- Title: A Systematic Review of Human-AI Co-Creativity
- Authors: Saloni Singh, Koen Hindriks, Dirk Heylen, Kim Baraka,
- Abstract summary: Co creativity community is making significant progress in developing more sophisticated and tailored systems to support and enhance human creativity.<n>We conducted a systematic literature review of 62 papers on co-creative systems.<n>Our findings suggest that systems offering high user control lead to greater satisfaction, trust, and a stronger sense of ownership over creative outcomes.
- Score: 1.837431956557716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The co creativity community is making significant progress in developing more sophisticated and tailored systems to support and enhance human creativity. Design considerations from prior work can serve as a valuable and efficient foundation for future systems. To support this effort, we conducted a systematic literature review of 62 papers on co-creative systems. These papers cover a diverse range of applications, including visual arts, design, and writing, where the AI acts not just as a tool but as an active collaborator in the creative process. From this review, we identified several key dimensions relevant to system design: phase of the creative process, creative task, proactive behavior of the system, user control, system embodiment, and AI model type. Our findings suggest that systems offering high user control lead to greater satisfaction, trust, and a stronger sense of ownership over creative outcomes. Furthermore, proactive systems, when adaptive and context sensitive, can enhance collaboration. We also extracted 24 design considerations, highlighting the value of encouraging users to externalize their thoughts and of increasing the system's social presence and transparency to foster trust. Despite recent advancements, important gaps remain, such as limited support for early creative phases like problem clarification, and challenges related to user adaptation to AI systems.
Related papers
- Beyond Brainstorming: What Drives High-Quality Scientific Ideas? Lessons from Multi-Agent Collaboration [59.41889496960302]
This paper investigates whether structured multi-agent discussions can surpass solitary ideation.<n>We propose a cooperative multi-agent framework for generating research proposals.<n>We employ a comprehensive protocol with agent-based scoring and human review across dimensions such as novelty, strategic vision, and integration depth.
arXiv Detail & Related papers (2025-08-06T15:59:18Z) - Human-AI Co-Creation: A Framework for Collaborative Design in Intelligent Systems [0.6526824510982802]
This paper explores the emergent paradigm of human-AI co-creation, where AI is not merely used for automation or efficiency gains, but actively participates in ideation, visual conceptualization, and decision-making.<n>Specifically, we investigate the use of large language models (LLMs) like GPT-4 and multimodal diffusion models such as Stable Diffusion as creative agents that engage designers in iterative cycles of proposal, critique, and revision.
arXiv Detail & Related papers (2025-07-22T04:29:33Z) - Extended Creativity: A Conceptual Framework for Understanding Human-AI Creative Relations [0.6031721946649193]
We identify three fundamental modes by which AI can support and shape creative processes.<n>Support, where AI acts as a tool; Synergy, where AI and humans collaborate in complementary ways; and Symbiosis, where human and AI cognition become so integrated that they form a unified creative system.<n>We examine how each configuration influences different levels of creativity from everyday problem solving to paradigm shifting innovation.
arXiv Detail & Related papers (2025-06-12T00:16:52Z) - Creativity in LLM-based Multi-Agent Systems: A Survey [56.25583236738877]
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts.<n>This is the first survey dedicated to creativity in MAS.<n>We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks.
arXiv Detail & Related papers (2025-05-27T12:36:14Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Initial Development and Evaluation of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) System [0.0]
Large language models (LLMs) provide a facsimile of creativity and the appearance of sentience, while not actually being either creative or sentient.
This paper proposes a technique for enhancing LLM output creativity via an iterative process of concept injection and refinement.
arXiv Detail & Related papers (2024-09-03T21:04:07Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Beyond Prompts: Exploring the Design Space of Mixed-Initiative
Co-Creativity Systems [11.427320283363326]
We conduct a human participant study with 185 participants to understand how users want to interact with differently configured MI-CC systems.
We find that MI-CC systems with more extensive coverage of the design space are rated higher or on par on a variety of creative and goal-completion metrics.
arXiv Detail & Related papers (2023-05-03T22:32:37Z) - Team Learning as a Lens for Designing Human-AI Co-Creative Systems [12.24664973838839]
Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes.
It is still unclear how we might achieve effective human-AI collaboration in open-ended task domains.
arXiv Detail & Related papers (2022-07-06T22:11:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.