論文の概要: The Saturation Point of Backtranslation in High Quality Low Resource English Gujarati Machine Translation
- arxiv url: http://arxiv.org/abs/2506.21566v1
- Date: Thu, 12 Jun 2025 09:02:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-07 02:47:44.276185
- Title: The Saturation Point of Backtranslation in High Quality Low Resource English Gujarati Machine Translation
- Title(参考訳): 高品質低資源英語グジャラティ機械翻訳における逆翻訳の飽和点
- Authors: Arwa Arif,
- Abstract要約: バックトランスレーションBTは低リソース機械翻訳MTにおいてモノリンガルコーパスを用いた追加の合成訓練データを生成するために広く利用されている。
多言語事前学習MBART50モデルを用いた英語グジャラート翻訳における逆翻訳の有効性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backtranslation BT is widely used in low resource machine translation MT to generate additional synthetic training data using monolingual corpora. While this approach has shown strong improvements for many language pairs, its effectiveness in high quality, low resource settings remains unclear. In this work, we explore the effectiveness of backtranslation for English Gujarati translation using the multilingual pretrained MBART50 model. Our baseline system, trained on a high quality parallel corpus of approximately 50,000 sentence pairs, achieves a BLEU score of 43.8 on a validation set. We augment this data with carefully filtered backtranslated examples generated from monolingual Gujarati text. Surprisingly, adding this synthetic data does not improve translation performance and, in some cases, slightly reduces it. We evaluate our models using multiple metrics like BLEU, ChrF++, TER, BLEURT and analyze possible reasons for this saturation. Our findings suggest that backtranslation may reach a point of diminishing returns in certain low-resource settings and we discuss implications for future research.
- Abstract(参考訳): 逆翻訳BTは低リソース機械翻訳MTにおいてモノリンガルコーパスを用いた追加の合成訓練データを生成するために広く用いられている。
このアプローチは多くの言語ペアに対して強力な改善がなされているが、高品質で低いリソース設定での有効性は依然として不明である。
本研究では,多言語事前学習MBART50モデルを用いた英語グジャラート翻訳の逆翻訳の有効性について検討する。
我々のベースラインシステムは,約5万文対の高品質並列コーパスに基づいて訓練され,検証セット上でのBLEUスコア43.8を達成する。
モノリンガルなGujaratiテキストから生成された後方変換例を慎重にフィルタすることで、このデータを拡張します。
驚くべきことに、この合成データを追加することで翻訳性能は向上せず、場合によってはわずかに減少する。
我々は、BLEU, ChrF++, TER, BLEURTといった複数のメトリクスを用いてモデルを評価し、この飽和の原因を分析する。
本研究は,バックトランスレーションが低リソース環境でのリターンの低下点に達する可能性を示唆し,今後の研究の意義について論じる。
関連論文リスト
- Data Augmentation With Back translation for Low Resource languages: A case of English and Luganda [0.0]
本稿では,英語とルガンダ語を併用したニューラル機械翻訳モデルを構築するための半教師付き手法として,バック翻訳の適用について検討する。
提案手法では,公開データとウェブクローリングデータの両方を用いて独自のNMTモデルを構築し,反復および増分バック翻訳手法を適用した。
その結果,英ラガンダ対の翻訳性能は,全翻訳方向の10点以上のBLEUスコアユニットで過去のベンチマークを上回った。
論文 参考訳(メタデータ) (2025-05-05T08:47:52Z) - A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
本研究は,既存のデータセットが特に騒々しい英語-マラティー語対の事例に焦点を当てた。
データ品質問題の影響を軽減するために,言語間文表現に基づくデータフィルタリング手法を提案する。
その結果,IndicSBERTによるベースラインポストフィルタよりも翻訳品質が大幅に向上した。
論文 参考訳(メタデータ) (2024-09-04T13:49:45Z) - Machine Translation for Ge'ez Language [0.0]
Ge'ezのような低リソース言語の機械翻訳は、語彙外単語、ドメインミスマッチ、ラベル付きトレーニングデータの欠如といった課題に直面している。
言語関連性に基づく多言語ニューラルマシン翻訳(MNMT)モデルを開発した。
また,最新のLCMであるGPT-3.5を用いて,ファジィマッチングを用いた数ショット翻訳実験を行った。
論文 参考訳(メタデータ) (2023-11-24T14:55:23Z) - Rethinking Round-Trip Translation for Machine Translation Evaluation [44.83568796515321]
ラウンドトリップ翻訳が参照なしで自動評価に利用できるという驚くべき発見を報告する。
ラウンドトリップ翻訳が複数の機械翻訳評価タスクに有用であることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:06:20Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - BitextEdit: Automatic Bitext Editing for Improved Low-Resource Machine
Translation [53.55009917938002]
自動編集によりマイニングしたビットクストを改良することを提案する。
提案手法は,5つの低リソース言語ペアと10の翻訳方向に対して,最大8個のBLEUポイントでCCMatrixマイニングビットクストの品質を向上することを示す。
論文 参考訳(メタデータ) (2021-11-12T16:00:39Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
我々は,mbart を未熟な言語に効果的に適用するための,継続的な事前学習フレームワークを提案する。
その結果,mBARTベースラインの微調整性能を一貫して改善できることが示された。
私たちのアプローチは、両方の言語が元のmBARTの事前トレーニングで見られる翻訳ペアのパフォーマンスを高めます。
論文 参考訳(メタデータ) (2021-05-09T14:49:07Z) - An Exploration of Data Augmentation Techniques for Improving English to
Tigrinya Translation [21.636157115922693]
補助データを生成する効果的な方法は、ターゲット言語文のバック翻訳です。
本稿では,Tigrinyaを事例として,合成原文を生成するバックトランスレーション法について検討する。
論文 参考訳(メタデータ) (2021-03-31T03:31:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。