TIM: A Large-Scale Dataset and large Timeline Intelligence Model for Open-domain Timeline Summarization
- URL: http://arxiv.org/abs/2506.21616v1
- Date: Sun, 22 Jun 2025 14:42:07 GMT
- Title: TIM: A Large-Scale Dataset and large Timeline Intelligence Model for Open-domain Timeline Summarization
- Authors: Chuanrui Hu, Wei Hu, Penghang Yu, Hua Zhang, Bing-Kun Bao,
- Abstract summary: Open-domain Timeline Summarization (TLS) is crucial for monitoring the evolution of news topics.<n>Existing methods typically employ general Large Language Models (LLMs) to summarize relevant timestamps from retrieved news.<n>We propose the first large Timeline Intelligence Model (TIM) for open-domain TLS, which is capable of effectively summarizing open-domain timelines.
- Score: 13.091922124063082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-domain Timeline Summarization (TLS) is crucial for monitoring the evolution of news topics. To identify changes in news topics, existing methods typically employ general Large Language Models (LLMs) to summarize relevant timestamps from retrieved news. While general LLMs demonstrate capabilities in zero-shot news summarization and timestamp localization, they struggle with assessing topic relevance and understanding topic evolution. Consequently, the summarized information often includes irrelevant details or inaccurate timestamps. To address these issues, we propose the first large Timeline Intelligence Model (TIM) for open-domain TLS, which is capable of effectively summarizing open-domain timelines. Specifically, we begin by presenting a large-scale TLS dataset, comprising over 1,000 news topics and more than 3,000 annotated TLS instances. Furthermore, we propose a progressive optimization strategy, which gradually enhance summarization performance. It employs instruction tuning to enhance summarization and topic-irrelevant information filtering capabilities. Following this, it exploits a novel dual-alignment reward learning method that incorporates both semantic and temporal perspectives, thereby improving the understanding of topic evolution principles. Through this progressive optimization strategy, TIM demonstrates a robust ability to summarize open-domain timelines. Extensive experiments in open-domain demonstrate the effectiveness of our TIM.
Related papers
- FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification [56.925103708982164]
We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
arXiv Detail & Related papers (2025-05-29T07:18:28Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - LAST SToP For Modeling Asynchronous Time Series [19.401463051705377]
We present a novel prompt design for Large Language Models (LLMs) tailored to Asynchronous Time Series.<n>Our approach effectively utilizes the rich natural language of event descriptions, allowing LLMs to benefit from their broad world knowledge for reasoning across different domains and tasks.<n>We further introduce Soft Prompting, a novel prompt-tuning mechanism that significantly improves model performance, outperforming existing fine-tuning methods such as QLoRA.
arXiv Detail & Related papers (2025-02-04T01:42:45Z) - Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization [93.56166917491487]
This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning.<n>Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications.
arXiv Detail & Related papers (2025-01-01T16:28:21Z) - TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models [14.880203496664963]
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification.<n>LLMs directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs.<n>We propose TableTime, which reformulates MTSC as a table understanding task.
arXiv Detail & Related papers (2024-11-24T07:02:32Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTime is a hierarchical multi-modal model that seamlessly integrates temporal information into large language models.
Our findings highlight the potential of integrating temporal features into LLMs, paving the way for advanced time series analysis.
arXiv Detail & Related papers (2024-10-24T12:32:19Z) - TPP-LLM: Modeling Temporal Point Processes by Efficiently Fine-Tuning Large Language Models [0.0]
Temporal point processes (TPPs) are widely used to model the timing and occurrence of events in domains such as social networks, transportation systems, and e-commerce.<n>We introduce TPP-LLM, a novel framework that integrates large language models (LLMs) with TPPs to capture both the semantic and temporal aspects of event sequences.
arXiv Detail & Related papers (2024-10-02T22:17:24Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Follow the Timeline! Generating Abstractive and Extractive Timeline
Summary in Chronological Order [78.46986998674181]
We propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order.
We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset.
UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2023-01-02T20:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.