Risk-Averse Total-Reward Reinforcement Learning
- URL: http://arxiv.org/abs/2506.21683v1
- Date: Thu, 26 Jun 2025 18:10:51 GMT
- Title: Risk-Averse Total-Reward Reinforcement Learning
- Authors: Xihong Su, Jia Lin Hau, Gersi Doko, Kishan Panaganti, Marek Petrik,
- Abstract summary: Risk-averse total-reward Markov Decision Processes (MDPs) offer a promising framework for modeling and solving undiscounted infinite-horizon objectives.<n>Existing model-based algorithms for risk measures like the entropic risk measure (ERM) and entropic value-at-risk (EVaR) are effective in small problems, but require full access to transition probabilities.<n>We propose a Q-learning algorithm to compute the optimal stationary policy for total-reward ERM and EVaR objectives with strong convergence and performance guarantees.
- Score: 9.129584027640405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Risk-averse total-reward Markov Decision Processes (MDPs) offer a promising framework for modeling and solving undiscounted infinite-horizon objectives. Existing model-based algorithms for risk measures like the entropic risk measure (ERM) and entropic value-at-risk (EVaR) are effective in small problems, but require full access to transition probabilities. We propose a Q-learning algorithm to compute the optimal stationary policy for total-reward ERM and EVaR objectives with strong convergence and performance guarantees. The algorithm and its optimality are made possible by ERM's dynamic consistency and elicitability. Our numerical results on tabular domains demonstrate quick and reliable convergence of the proposed Q-learning algorithm to the optimal risk-averse value function.
Related papers
- Planning and Learning in Average Risk-aware MDPs [4.696083734269232]
We extend risk-neutral algorithms to accommodate the more general class of dynamic risk measures.<n>Both the RVI and Q-learning algorithms are proven to converge to optimality.<n>Our approach enables the identification of policies that are finely tuned to the intricate risk-awareness of the agent that they serve.
arXiv Detail & Related papers (2025-03-22T03:18:09Z) - Efficient Risk-sensitive Planning via Entropic Risk Measures [51.42922439693624]
We show that only Entropic Risk Measures (EntRM) can be efficiently optimized through dynamic programming.<n>We prove that this optimality front can be computed effectively thanks to a novel structural analysis and smoothness properties of entropic risks.
arXiv Detail & Related papers (2025-02-27T09:56:51Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.<n>Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.<n>We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - Risk-averse Total-reward MDPs with ERM and EVaR [12.719528972742394]
We show that the risk-averse em total reward criterion can be optimized by a stationary policy.<n>Our results indicate that the total reward criterion may be preferable to the discounted criterion in a broad range of risk-averse reinforcement learning domains.
arXiv Detail & Related papers (2024-08-30T13:33:18Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Risk-Averse Reinforcement Learning via Dynamic Time-Consistent Risk
Measures [10.221369785560785]
In this paper, we consider the problem of maximizing dynamic risk of a sequence of rewards in Markov Decision Processes (MDPs)
Using a convex combination of expectation and conditional value-at-risk (CVaR) as a special one-step conditional risk measure, we reformulate the risk-averse MDP as a risk-neutral counterpart with augmented action space and manipulation on the immediate rewards.
Our numerical studies show that the risk-averse setting can reduce the variance and enhance robustness of the results.
arXiv Detail & Related papers (2023-01-14T21:43:18Z) - RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk [28.811725782388688]
We propose and analyze a new framework to jointly model the risk associated with uncertainties in finite-horizon and discounted infinite-horizon MDPs.
We show that when the risk-aversion is defined using either EVaR or the entropic risk, the optimal policy in RASR can be computed efficiently using a new dynamic program formulation with a time-dependent risk level.
arXiv Detail & Related papers (2022-09-09T00:34:58Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.