A Dual-Layered Evaluation of Geopolitical and Cultural Bias in LLMs
- URL: http://arxiv.org/abs/2506.21881v1
- Date: Fri, 27 Jun 2025 03:37:15 GMT
- Title: A Dual-Layered Evaluation of Geopolitical and Cultural Bias in LLMs
- Authors: Sean Kim, Hyuhng Joon Kim,
- Abstract summary: Large language models (LLMs) are increasingly deployed across diverse linguistic and cultural contexts.<n>This paper defines two types of bias in LLMs: model bias (bias stemming from model training) and inference bias (bias induced by the language of the query)<n>We construct a manually curated dataset spanning both factual and disputable QA, across four languages and question types.
- Score: 0.6494933736121663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) are increasingly deployed across diverse linguistic and cultural contexts, understanding their behavior in both factual and disputable scenarios is essential, especially when their outputs may shape public opinion or reinforce dominant narratives. In this paper, we define two types of bias in LLMs: model bias (bias stemming from model training) and inference bias (bias induced by the language of the query), through a two-phase evaluation. Phase 1 evaluates LLMs on factual questions where a single verifiable answer exists, assessing whether models maintain consistency across different query languages. Phase 2 expands the scope by probing geopolitically sensitive disputes, where responses may reflect culturally embedded or ideologically aligned perspectives. We construct a manually curated dataset spanning both factual and disputable QA, across four languages and question types. The results show that Phase 1 exhibits query language induced alignment, while Phase 2 reflects an interplay between the model's training context and query language. This paper offers a structured framework for evaluating LLM behavior across neutral and sensitive topics, providing insights for future LLM deployment and culturally aware evaluation practices in multilingual contexts.
Related papers
- Disentangling Language and Culture for Evaluating Multilingual Large Language Models [48.06219053598005]
This paper introduces a Dual Evaluation Framework to comprehensively assess the multilingual capabilities of LLMs.<n>By decomposing the evaluation along the dimensions of linguistic medium and cultural context, this framework enables a nuanced analysis of LLMs' ability to process questions cross-lingually.
arXiv Detail & Related papers (2025-05-30T14:25:45Z) - Found in Translation: Measuring Multilingual LLM Consistency as Simple as Translate then Evaluate [36.641755706551336]
Large language models (LLMs) provide detailed and impressive responses to queries in English.<n>But are they really consistent at responding to the same query in other languages?<n>We propose a framework to evaluate LLM's cross-lingual consistency based on a simple Translate then Evaluate strategy.
arXiv Detail & Related papers (2025-05-28T06:00:21Z) - Evaluating Large Language Model with Knowledge Oriented Language Specific Simple Question Answering [73.73820209993515]
We introduce KoLasSimpleQA, the first benchmark evaluating the multilingual factual ability of Large Language Models (LLMs)<n>Inspired by existing research, we created the question set with features such as single knowledge point coverage, absolute objectivity, unique answers, and temporal stability.<n>Results show significant performance differences between the two domains.
arXiv Detail & Related papers (2025-05-22T12:27:02Z) - Comparing LLM Text Annotation Skills: A Study on Human Rights Violations in Social Media Data [2.812898346527047]
This study investigates the capabilities of large language models (LLMs) for zero-shot and few-shot annotation of social media posts in Russian and Ukrainian.<n>To evaluate the effectiveness of these models, their annotations are compared against a gold standard set of human double-annotated labels.<n>The study explores the unique patterns of errors and disagreements exhibited by each model, offering insights into their strengths, limitations, and cross-linguistic adaptability.
arXiv Detail & Related papers (2025-05-15T13:10:47Z) - Mapping Geopolitical Bias in 11 Large Language Models: A Bilingual, Dual-Framing Analysis of U.S.-China Tensions [2.8202443616982884]
This study systematically analyzes geopolitical bias across 11 prominent Large Language Models (LLMs)<n>We generated 19,712 prompts designed to detect ideological leanings in model outputs.<n>U.S.-based models predominantly favored Pro-U.S. stances, while Chinese-origin models exhibited pronounced Pro-China biases.
arXiv Detail & Related papers (2025-03-31T03:38:17Z) - Probing LLMs for Multilingual Discourse Generalization Through a Unified Label Set [28.592959007943538]
This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks.<n>Using multilingual discourse relation classification as a testbed, we examine a comprehensive set of 23 LLMs of varying sizes and multilingual capabilities.<n>Our results show that LLMs, especially those with multilingual training corpora, can generalize discourse information across languages and frameworks.
arXiv Detail & Related papers (2025-03-13T16:20:25Z) - ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models [75.05436691700572]
We introduce ExpliCa, a new dataset for evaluating Large Language Models (LLMs) in explicit causal reasoning.<n>We tested seven commercial and open-source LLMs on ExpliCa through prompting and perplexity-based metrics.<n>Surprisingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events.
arXiv Detail & Related papers (2025-02-21T14:23:14Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.